Skip to main content

Drugs of Abuse Affecting 5-HT2B Receptors

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

Abstract

Stimulant and psychedelic drugs of abuse exert their effects through interactions with monoaminergic systems. Compared to other monoaminergic receptors and transporters, the 5-hydroxytryptamine 2B (5-HT2B) receptor represents a relatively little studied target of serotonergic drugs of abuse. However, studies suggest the involvement of 5-HT2B receptors in the mechanism of action of serotonergic stimulants and receptor activation may additionally lead to specific adverse effects such as cardiac valvulopathy in users. 5-HT2B receptor activation has been demonstrated for stimulant-type new psychoactive substances of the benzofuran class and for substituted amphetamines with a distinct serotonergic vs. dopaminergic profile. Besides stimulants, many psychedelic drugs activate the 5-HT2B receptor but the consequence thereof remains unclear. Cardiac valvulopathy is likely not an adverse effect to consider when psychedelics are used occasionally but this may be different for “microdosing” which involves low doses of psychedelics taken daily or multiple times per week.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MDA:

3,4-methylenedioxyamphetamine

MDMA:

3,4-methylenedioxymethamphetamine

CYP:

Cytochrome P450

LSD:

Lysergic acid diethylamide

NPS:

New psychoactive substances

SERT:

Serotonin transporter

References

  1. Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36(1):41–50

    Article  CAS  PubMed  Google Scholar 

  2. Simmler LD, Rickli A, Schramm Y, Hoener MC, Liechti ME (2014) Pharmacological profiles of aminoindanes, piperazines, and pipradrol derivatives. Biochem Pharmacol 88(2):237–244

    Article  CAS  PubMed  Google Scholar 

  3. Luethi D, Kaeser PJ, Brandt SD, Krähenbühl S, Hoener MC, Liechti ME (2018) Pharmacological profile of methylphenidate-based designer drugs. Neuropharmacology 134:133–140

    Article  CAS  PubMed  Google Scholar 

  4. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479(1–3):23–40

    Article  CAS  PubMed  Google Scholar 

  5. Luethi D, Kolaczynska KE, Walter M, Suzuki M, Rice KC, Blough BE et al (2019) Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J Psychopharmacol 33:831–841

    Article  CAS  PubMed  Google Scholar 

  6. Nichols DE (2016) Psychedelics. Pharmacol Rev 68(2):264–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181

    Article  CAS  PubMed  Google Scholar 

  8. Liechti ME (2017) Modern clinical research on LSD. Neuropsychopharmacology 42(11):2114–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9(17):3897–3902

    Article  CAS  PubMed  Google Scholar 

  10. Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stampfli P et al (2017) The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol 27(3):451–457

    Article  CAS  PubMed  Google Scholar 

  11. Kraehenmann R, Pokorny D, Vollenweider L, Preller KH, Pokorny T, Seifritz E et al (2017) Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation. Psychopharmacology 234:2031–2046

    Article  CAS  PubMed  Google Scholar 

  12. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J et al (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168(2):458–470

    Article  CAS  PubMed  Google Scholar 

  13. Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    Article  CAS  PubMed  Google Scholar 

  14. Rickli A, Kopf S, Hoener MC, Liechti ME (2015a) Pharmacological profile of novel psychoactive benzofurans. Br J Pharmacol 172(13):3412–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rickli A, Hoener MC, Liechti ME (2015b) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25(3):365–376

    Article  CAS  PubMed  Google Scholar 

  16. Luethi D, Kolaczynska KE, Docci L, Krähenbühl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134:4–12

    Article  CAS  PubMed  Google Scholar 

  17. Rickli A, Moning OD, Hoener MC, Liechti ME (2016) Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol 26(8):1327–1337

    Article  CAS  PubMed  Google Scholar 

  18. Rickli A, Liakoni E, Hoener MC, Liechti ME (2018) Opioid-induced inhibition of the human 5-HT and noradrenaline transporters in vitro: link to clinical reports of serotonin syndrome. Br J Pharmacol 175(3):532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill MN, Sun JC, Tse MT, Gorzalka BB (2006) Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. Int J Neuropsychopharmacol 9(3):277–286

    Article  CAS  PubMed  Google Scholar 

  20. Darmani NA (2001) Cannabinoids of diverse structure inhibit two DOI-induced 5-HT2A receptor-mediated behaviors in mice. Pharmacol Biochem Behav 68(2):311–317

    Google Scholar 

  21. Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P et al (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115(4):622–628

    Google Scholar 

  22. Borman RA, Tilford NS, Harmer DW, Day N, Ellis ES, Sheldrick RL et al (2002) 5-HT2B receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro. Br J Pharmacol 135(5):1144–1151

    Google Scholar 

  23. Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391(1–2):45–51

    Google Scholar 

  24. Choi DS, Birraux G, Launay JM, Maroteaux L (1994) The human serotonin 5-HT2B receptor: pharmacological link between 5-HT2 and 5-HT1D receptors. FEBS Lett 352(3):393–399

    Google Scholar 

  25. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76(2):323–329

    Article  CAS  PubMed  Google Scholar 

  26. Lin Z, Walther D, Yu XY, Drgon T, Uhl GR (2004) The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. Pharmacogenetics 14(12):805–811

    Article  CAS  PubMed  Google Scholar 

  27. Doly S, Bertran-Gonzalez J, Callebert J, Bruneau A, Banas SM, Belmer A et al (2009) Role of serotonin via 5-HT2B receptors in the reinforcing effects of MDMA in mice. PLoS One 4(11):e7952

    Google Scholar 

  28. Doly S, Valjent E, Setola V, Callebert J, Herve D, Launay JM et al (2008) Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro. J Neurosci 28(11):2933–2940

    Google Scholar 

  29. Elangbam CS (2010) Drug-induced valvulopathy: an update. Toxicol Pathol 38(6):837–848

    Article  CAS  PubMed  Google Scholar 

  30. Bhattacharyya S, Schapira AH, Mikhailidis DP, Davar J (2009) Drug-induced fibrotic valvular heart disease. Lancet 374(9689):577–585

    Article  CAS  PubMed  Google Scholar 

  31. Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease—it was meant 2B. Pharmacol Ther 132(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ et al (2000) Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102(23):2836–2841

    Google Scholar 

  33. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA et al (2000) Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57(1):75–81

    Google Scholar 

  34. Levin A (1975) The non-medical misuse of fenfluramine by drug-dependent young South Africans. Postgrad Med J 51(Suppl 1):186–188

    PubMed  Google Scholar 

  35. Foltin RW, Haney M, Comer SD, Fischman MW (1996) Effect of fenfluramine on food intake, mood, and performance of humans living in a residential laboratory. Physiol Behav 59(2):295–305

    Article  CAS  PubMed  Google Scholar 

  36. Dawson P, Moffatt JD (2012) Cardiovascular toxicity of novel psychoactive drugs: lessons from the past. Prog Neuro-Psychopharmacol Biol Psychiatry 39(2):244–252

    Article  CAS  Google Scholar 

  37. Liechti ME (2014) Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signalling. Swiss Med Wkly 144:w14043

    Google Scholar 

  38. Luethi D, Hoener MC, Liechti ME (2018) Effects of the new psychoactive substances diclofensine, diphenidine, and methoxphenidine on monoaminergic systems. Eur J Pharmacol 819:242–247

    Article  CAS  PubMed  Google Scholar 

  39. Wallach J, Kang H, Colestock T, Morris H, Bortolotto ZA, Collingridge GL et al (2016) Pharmacological investigations of the dissociative ‘legal highs’ diphenidine, methoxphenidine and analogues. PLoS One 11(6):e0157021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (2015c) Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99:546–553

    Article  CAS  PubMed  Google Scholar 

  41. Luethi D, Trachsel D, Hoener MC, Liechti ME (2018) Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs). Neuropharmacology 134:141–148

    Article  CAS  PubMed  Google Scholar 

  42. Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Johnson RA, Janowsky A (2018) Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: high potency agonists at 5-HT2A receptors. Biochem Pharmacol 158:27–34

    Google Scholar 

  43. Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (2013) Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol 700(1–3):147–151

    Article  CAS  PubMed  Google Scholar 

  44. Maier J, Mayer FP, Luethi D, Holy M, Jantsch K, Reither H et al (2018) The psychostimulant (+/−)-cis-4,4′-dimethylaminorex (4,4′-DMAR) interacts with human plasmalemmal and vesicular monoamine transporters. Neuropharmacology 138:282–291

    Article  CAS  PubMed  Google Scholar 

  45. Luethi D, Widmer R, Trachsel D, Hoener MC, Liechti ME (2019) Monoamine receptor interaction profiles of 4-aryl-substituted 2,5-dimethoxyphenethylamines (2C-BI derivatives). Eur J Pharmacol 855:103–111

    Article  CAS  PubMed  Google Scholar 

  46. Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, 5-HT2B and 5-HT2C receptors. Naunyn Schmiedeberg’s Arch Pharmacol 359(1):1–6

    Google Scholar 

  47. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641

    Article  CAS  PubMed  Google Scholar 

  48. Huang XP, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ et al (2009) Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine2B receptor agonists: implications for drug safety assessment. Mol Pharmacol 76(4):710–722

    Google Scholar 

  49. Elangbam CS, Job LE, Zadrozny LM, Barton JC, Yoon LW, Gates LD et al (2008) 5-hydroxytryptamine (5-HT)-induced valvulopathy: compositional valvular alterations are associated with 5-HT2B receptor and 5-HT transporter transcript changes in Sprague-Dawley rats. Exp Toxicol Pathol 60(4–5):253–262

    Google Scholar 

  50. Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356(1):6–9

    Article  CAS  PubMed  Google Scholar 

  51. Wee S, Woolverton WL (2006) Self-administration of mixtures of fenfluramine and amphetamine by rhesus monkeys. Pharmacol Biochem Behav 84(2):337–343

    Article  CAS  PubMed  Google Scholar 

  52. Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (2005) Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs. J Pharmacol Exp Ther 313(2):848–854

    Article  CAS  PubMed  Google Scholar 

  53. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237(4819):1219–1223

    Article  CAS  PubMed  Google Scholar 

  54. Kuhar MJ, Ritz MC, Boja JW (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14(7):299–302

    Article  CAS  PubMed  Google Scholar 

  55. Droogmans S, Cosyns B, D’Haenen H, Creeten E, Weytjens C, Franken PR et al (2007) Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am J Cardiol 100(9):1442–1445

    Article  CAS  PubMed  Google Scholar 

  56. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B et al (2003) 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63(6):1223–1229

    Article  CAS  PubMed  Google Scholar 

  57. Kreth K, Kovar K, Schwab M, Zanger UM (2000) Identification of the human cytochromes P450 involved in the oxidative metabolism of “ecstasy”-related designer drugs. Biochem Pharmacol 59(12):1563–1571

    Article  CAS  PubMed  Google Scholar 

  58. Meyer MR, Peters FT, Maurer HH (2008) The role of human hepatic cytochrome P450 isozymes in the metabolism of racemic 3,4-methylenedioxy-methamphetamine and its enantiomers. Drug Metab Dispos 36(11):2345–2354

    Article  CAS  PubMed  Google Scholar 

  59. Vizeli P, Schmid Y, Prestin K, Meyer Zu Schwabedissen HE, Liechti ME (2017) Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. Eur Neuropsychopharmacol 27(3):232–238

    Article  CAS  PubMed  Google Scholar 

  60. Schmid Y, Vizeli P, Hysek CM, Prestin K, Meyer Zu Schwabedissen HE, Liechti ME (2016) CYP2D6 function moderates the pharmacokinetics and pharmacodynamics of 3,4-methylene-dioxymethamphetamine in a controlled study in healthy individuals. Pharmacogenet Genomics 26(8):397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roth BL, Choudhary MS, Khan N, Uluer AZ (1997) High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 280(2):576–583

    Google Scholar 

  62. Rabin RA, Regina M, Doat M, Winter JC (2002) 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol Biochem Behav 72(1–2):29–37

    Google Scholar 

  63. Luethi D, Liechti ME (2018) Monoamine transporter and receptor interaction profiles in vitro predict reported human doses of novel psychoactive stimulants and psychedelics. Int J Neuropsychopharmacol 21(10):926–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gelvin EP, McGavack TH (1952) 2-Amino-1-(p-methylphenyl)-propane (aptrol) as an anorexigenic agent in weight reduction. N Y State J Med 52(2):223–226

    CAS  PubMed  Google Scholar 

  65. Blanckaert P, van Amsterdam J, Brunt T, van den Berg J, Van Durme F, Maudens K et al (2013) 4-Methyl-amphetamine: a health threat for recreational amphetamine users. J Psychopharmacol 27(9):817–822

    Article  CAS  PubMed  Google Scholar 

  66. Bäckberg M, Beck O, Hulten P, Rosengren-Holmberg J, Helander A (2014) Intoxications of the new psychoactive substance 5-(2-aminopropyl)indole (5-IT): a case series from the Swedish STRIDA project. Clin Toxicol 52(6):618–624

    Article  CAS  Google Scholar 

  67. Katselou M, Papoutsis I, Nikolaou P, Spiliopoulou C, Athanaselis S (2015) 5-(2-Aminopropyl)indole: a new player in the drama of ‘legal highs’ alerts the community. Drug Alcohol Rev 34(1):51–57

    Article  PubMed  Google Scholar 

  68. Kronstrand R, Roman M, Dahlgren M, Thelander G, Wikstrom M, Druid H (2013) A cluster of deaths involving 5-(2-aminopropyl)indole (5-IT). J Anal Toxicol 37(8):542–546

    Article  CAS  PubMed  Google Scholar 

  69. Seetohul LN, Pounder DJ (2013) Four fatalities involving 5-IT. J Anal Toxicol 37(7):447–451

    Article  CAS  PubMed  Google Scholar 

  70. Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216

    Google Scholar 

  71. Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35(25):2505–2511

    Google Scholar 

  72. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stampfli P et al (2018) Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife 7:e35082

    Google Scholar 

  73. Song J, Hanniford D, Doucette C, Graham E, Poole MF, Ting A et al (2005) Development of homogeneous high-affinity agonist binding assays for 5-HT2 receptor subtypes. Assay Drug Dev Technol 3(6):649–659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Luethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luethi, D., Liechti, M.E. (2021). Drugs of Abuse Affecting 5-HT2B Receptors. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_16

Download citation

Publish with us

Policies and ethics