Skip to main content

5-HT2B Receptors in Liver

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

  • 372 Accesses

Abstract

The liver has many functions, mainly relating to digestion and detoxification, electrolyte/fluid balancing and haemostasis. Hepatic wound healing is a tightly regulated multi-cellular response to liver injury that stimulates a rapid and efficient repair of the damaged tissue, replacement of lost epithelial cells and restoration of the normal liver architecture and function. Fibrosis is the pathological consequence of chronic liver disease and the accumulation of fibrotic scar tissue impairs liver function, ultimately leading to advanced fibrosis/cirrhosis and increased risk of organ failure or developing liver cancer. In this chapter, we will summarize the important role for serotonin through 5-HT2B receptors reported in hepatocyte proliferation, liver regeneration and fibrosis and in liver metabolic diseases and cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDL:

Bile duct ligation

BECs:

Biliary epithelial cells

CHC:

Chronic hepatitis C

CLD:

Chronic liver disease

ECM:

Extracellular matrix

FFA:

Fatty acids

HM:

Hepatic myofibroblasts

HSC:

Hepatic stellate cells

HCC:

Hepatocellular carcinoma

HFD:

High fat diet

mTOR:

Mammalian target of rapamycin

ERK1:

Mitogen activated protein kinase 1

MAO-A:

Monoamine oxidase A

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PHx:

Partial hepatectomy

PSC:

Primary sclerosing cholangitis

SERT:

Serotonin transporter

TGF-β1:

Transforming growth factor β1

TG:

Triglyceride

TPH1:

Tryptophan hydroxylase 1

VLDL:

Very low-density lipoprotein

WH:

Wound healing

References

  1. Sasse D, Spornitz UM, Piotr MI (1992) Liver architecture. Enzyme 46:8–32

    Article  CAS  PubMed  Google Scholar 

  2. Katz N, Jungermann K (1976) Autoregulatory shift from fructolysis to lactate gluconeogenesis in rat hepatocyte suspensions: the problem of metabolic zonation of liver parenchyma. Hoppe-Seyler’s Z Physiol Chem 357(1):359–376

    Article  CAS  Google Scholar 

  3. Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee S-O et al (2008) Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 295(4):G725–GG34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox ES, Thomas P, Broitman SA (1987) Comparative studies of endotoxin uptake by isolated rat Kupffer and peritoneal cells. Infect Immun 55(12):2962–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eming SA, Wynn TA, Martin P (2017) Inflammation and metabolism in tissue repair and regeneration. Science 356(6342):1026–1030

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456

    Article  CAS  PubMed  Google Scholar 

  7. Wallace MC, Friedman SL (2014) Hepatic fibrosis and the microenvironment: fertile soil for hepatocellular carcinoma development. Gene Expr 16(2):77–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411

    Article  CAS  PubMed  Google Scholar 

  9. Fullard N, Moles A, O’Reilly S, van Laar JM, Faini D, Diboll J et al (2013) The c-Rel subunit of NF-kappaB regulates epidermal homeostasis and promotes skin fibrosis in mice. Am J Pathol 182(6):2109–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761

    Article  CAS  PubMed  Google Scholar 

  11. Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z et al (2002) Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 122(5):1303–1313

    Article  CAS  PubMed  Google Scholar 

  12. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S et al (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102(3):538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM et al (2013) Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381(9865):468–475

    Article  CAS  PubMed  Google Scholar 

  14. D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V et al (2012) A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 56(2):532–543

    Article  PubMed  Google Scholar 

  15. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J et al (2018) A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67(5):1754–1767

    Article  CAS  PubMed  Google Scholar 

  16. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC et al (2012) Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143(4):1073–1083

    Article  CAS  PubMed  Google Scholar 

  17. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C et al (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 109(24):9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Trautwein C, Friedman SL, Schuppan D, Pinzani M (2015) Hepatic fibrosis: concept to treatment. J Hepatol 62(1 Suppl):S15–S24

    Article  CAS  PubMed  Google Scholar 

  20. Schlienger RG, Meier CR (2003) Effect of selective serotonin reuptake inhibitors on platelet activation. Am J Cardiovasc Drugs 3(3):149–162

    Article  CAS  PubMed  Google Scholar 

  21. Walther DJ, Peter J-U, Winter S, Höltje M, Paulmann N, Grohmann M et al (2003) Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell 115(7):851–862

    Article  CAS  PubMed  Google Scholar 

  22. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770):104

    Article  CAS  PubMed  Google Scholar 

  23. Walther DJ, Peter J-U, Bashammakh S, Hörtnagl H, Voits M, Fink H et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76

    Article  CAS  PubMed  Google Scholar 

  24. Nocito A, Georgiev P, Dahm F, Jochum W, Bader M, Graf R et al (2007) Platelets and platelet-derived serotonin promote tissue repair after normothermic hepatic ischemia in mice. Hepatology 45(2):369–376

    Article  CAS  PubMed  Google Scholar 

  25. Tian Y, Graf R, El-Badry AM, Lesurtel M, Furrer K, Moritz W et al (2011) Activation of serotonin receptor-2B rescues small-for-size liver graft failure in mice. Hepatology 53(1):253–262

    Article  CAS  PubMed  Google Scholar 

  26. Matondo RB, Punt C, Homberg J, Toussaint MJM, Kisjes R, Korporaal SJA et al (2009) Deletion of the serotonin transporter in rats disturbs serotonin homeostasis without impairing liver regeneration. Am J Physiol Gastrointest Liver Physiol 296(4):G963–G9G8

    Article  CAS  PubMed  Google Scholar 

  27. Bucher NL, Swaffield MN, Ditroia JF (1964) The influence of age upon the incorporation of thymidine-2-c14 into the dna of regenerating rat liver. Cancer Res 24:509–512

    CAS  PubMed  Google Scholar 

  28. Fortner JG, Lincer RM (1990) Hepatic resection in the elderly. Ann Surg 211(2):141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Timchenko NA (2009) Aging and liver regeneration. TEM 20(4):171–176

    CAS  PubMed  Google Scholar 

  30. Furrer K, Rickenbacher A, Tian Y, Jochum W, Bittermann AG, Kach A et al (2011) Serotonin reverts age-related capillarization and failure of regeneration in the liver through a VEGF-dependent pathway. Proc Natl Acad Sci U S A 108(7):2945–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ruddell RG, Oakley F, Hussain Z, Yeung I, Bryan-Lluka LJ, Ramm GA et al (2006) A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol 169(3):861–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wright MC, Issa R, Smart DE, Trim N, Murray GI, Primrose JN et al (2001) Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 121(3):685–698

    Article  CAS  PubMed  Google Scholar 

  33. Elrick LJ, Leel V, Blaylock MG, Duncan L, Drever MR, Strachan G et al (2005) Generation of a monoclonal human single chain antibody fragment to hepatic stellate cells--a potential mechanism for targeting liver anti-fibrotic therapeutics. J Hepatol 42(6):888–896

    Article  CAS  PubMed  Google Scholar 

  34. Ebrahimkhani MR, Oakley F, Murphy LB, Mann J, Moles A, Perugorria MJ et al (2011) Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease. Nat Med 17(12):1668–1673

    Article  CAS  PubMed  Google Scholar 

  35. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807

    Article  CAS  PubMed  Google Scholar 

  36. Malik R, Selden C, Hodgson H (2002) The role of non-parenchymal cells in liver growth. Semin Cell Dev Biol 13(6):425–431

    Article  CAS  PubMed  Google Scholar 

  37. Zollner G, Trauner M (2008) Mechanisms of cholestasis. Clin Liver Dis 12(1):1–26

    Article  PubMed  Google Scholar 

  38. Hohenester S, Buy Wenniger L, Paulusma CC, van Vliet SJ, Jefferson DM, Oude Elferink RP et al (2012) A biliary HCO3− umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55(1):173–183

    Article  CAS  PubMed  Google Scholar 

  39. Mendes FD, Lindor KD (2004) Primary sclerosing cholangitis. Clin Liver Dis 8(1):195–211

    Article  PubMed  Google Scholar 

  40. Kyritsi K, Chen L, O’Brien A, Francis H, Hein TW, Venter J et al (2019) Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis regulates biliary proliferation and liver fibrosis during cholestasis. Hepatology 3:990–1008

    Google Scholar 

  41. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D (2005) Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 43(6):1045–1054

    Article  CAS  PubMed  Google Scholar 

  42. Hardy T, Oakley F, Anstee QM, Day CP (2016) Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu Rev Pathol 11:451–496

    Article  CAS  PubMed  Google Scholar 

  43. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84

    Article  PubMed  Google Scholar 

  44. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61(5):1547–1554

    Article  CAS  PubMed  Google Scholar 

  45. Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M et al (2007) Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology 133(2):608–618

    Article  CAS  PubMed  Google Scholar 

  46. Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y et al (2011) L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem 286(40):34800–34808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li X, Guo K, Li T, Ma S, An S, Wang S et al (2018) 5-HT 2 receptor mediates high-fat diet-induced hepatic steatosis and very low density lipoprotein overproduction in rats. Obes Res Clin Pract 12(Suppl 2):16–28

    Article  PubMed  Google Scholar 

  48. Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68(2):280–295

    Article  CAS  PubMed  Google Scholar 

  49. Choi W, Namkung J, Hwang I, Kim H, Lim A, Park HJ et al (2018) Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat Commun 9(1):4824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Fu J, Ma S, Li X, An S, Li T, Guo K et al (2016) Long-term stress with hyperglucocorticoidemia-induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver. Int J Biol Sci 12(2):219–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  52. Liu A, Galoosian A, Kaswala D, Li AA, Gadiparthi C, Cholankeril G et al (2018) Nonalcoholic fatty liver disease: epidemiology, liver transplantation trends and outcomes, and risk of recurrent disease in the graft. J Clin Transl Hepatol 6(4):420–424

    PubMed  PubMed Central  Google Scholar 

  53. Shu B, Zhai M, Miao X, He C, Deng C, Fang Y et al (2018) Serotonin and YAP/VGLL4 balance correlated with progression and poor prognosis of hepatocellular carcinoma. Sci Rep 8(1):9739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Abdel-Razik A, Elhelaly R, Elzehery R, El-Diasty A, Abed S, Elhammady D et al (2016) Could serotonin be a potential marker for hepatocellular carcinoma? A prospective single-center observational study. Eur J Gastroenterol Hepatol 28(5):599–605

    Article  CAS  PubMed  Google Scholar 

  55. Soll C, Riener MO, Oberkofler CE, Hellerbrand C, Wild PJ, DeOliveira ML et al (2012) Expression of serotonin receptors in human hepatocellular cancer. Clin Cancer Res 18(21):5902–5910

    Article  CAS  PubMed  Google Scholar 

  56. Soll C, Jang JH, Riener MO, Moritz W, Wild PJ, Graf R et al (2010) Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology 51(4):1244–1254

    Article  CAS  PubMed  Google Scholar 

  57. Niture S, Gyamfi MA, Kedir H, Arthur E, Ressom H, Deep G et al (2018) Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway. CCS 16(1):78

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Patel SH, Camargo FD, Yimlamai D (2017) Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 152(3):533–545

    Article  CAS  PubMed  Google Scholar 

  59. Liu S, Miao R, Zhai M, Pang Q, Deng Y, Liu S et al (2017) Effects and related mechanisms of serotonin on malignant biological behavior of hepatocellular carcinoma via regulation of Yap. Oncotarget 8(29):47412–47424

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fatima S, Shi X, Lin Z, Chen GQ, Pan XH, Wu JC et al (2016) 5-Hydroxytryptamine promotes hepatocellular carcinoma proliferation by influencing beta-catenin. Mol Oncol 10(2):195–212

    Article  CAS  PubMed  Google Scholar 

  61. Yang Q, Yan C, Yin C, Gong Z (2017) Serotonin activated hepatic stellate cells contribute to sex disparity in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol 3(3):484–499

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang Q, Yan C, Gong Z (2018) Interaction of hepatic stellate cells with neutrophils and macrophages in the liver following oncogenic kras activation in transgenic zebrafish. Sci Rep 8(1):8495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Oakley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gee, L., Oakley, F. (2021). 5-HT2B Receptors in Liver. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_14

Download citation

Publish with us

Policies and ethics