Skip to main content

The Discovery of 5-HT2B Receptor Pharmacology Through the Understanding of Drug-Induced Valvulopathy

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

Abstract

Chronic valvular heart disease (VHD) with myxomatous degeneration and thickening of the mitral valve leaflets is a deleterious side effect of many drugs targeting the serotonergic system. It is due to the poor selectivity of these old drugs and thus stimulation of 5-HT2 receptors as off targets by either the main compound or their metabolites. Consequently, many drugs are now withdrawn from the market due to VHD development, and because binding of 5-HT2B receptor refers to as a “black box warning”. However, 5-HT2 receptors are involved in many pathological conditions and represent promising targets for the development of new drugs. Thus, a better understanding of the pharmacology of 5-HT2 receptors, more specifically of 5-HT2B receptor, could help design new drugs devoid of cardiac side effects. We review here cellular mechanisms involved in valvular degeneration and regulated by serotonin stimulation, as well as the pharmacology of 5-HT2B receptor agonists that could provide new insight into VHD development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD et al (1997) Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 337(9):581–588

    Article  CAS  PubMed  Google Scholar 

  2. Zuetenhorst JM, Bonfrer JMGM, Korse CM, Bakker R, van Tinteren H, Taal BG (2003) Carcinoid heart disease. Cancer 97(7):1609–1615

    Article  CAS  PubMed  Google Scholar 

  3. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95(1):73–88

    Article  CAS  PubMed  Google Scholar 

  4. Zolkowska D, Baumann MH, Rothman RB (2008) Chronic fenfluramine administration increases plasma serotonin (5-hydroxytryptamine) to nontoxic levels. J Pharmacol Exp Ther 324(2):791–797

    Article  CAS  PubMed  Google Scholar 

  5. Rothman RB, Zolkowska D, Baumann MH (2008) Serotonin (5-HT) transporter ligands affect plasma 5-HT in rats. Ann N Y Acad Sci 1139(1):268–284

    Article  CAS  PubMed  Google Scholar 

  6. Rothman RB, Baumann MH (2009) Serotonergic Drugs and Valvular Heart Disease. Expert Opin Drug Saf 8(3):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Celada P, Pérez J, Alvarez E, Artigas F (1992) Monoamine oxidase inhibitors phenelzine and brofaromine increase plasma serotonin and decrease 5-hydroxyindoleacetic acid in patients with major depression: relationship to clinical improvement. J Clin Psychopharmacol 12(5):309–315

    Article  CAS  PubMed  Google Scholar 

  8. Rothman RB, Baumann MH (2006) Therapeutic potential of monoamine transporter substrates. Curr Top Med Chem 6(17):1845–1859

    Article  CAS  PubMed  Google Scholar 

  9. Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ et al (2000) Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102(23):2836–2841

    Article  CAS  PubMed  Google Scholar 

  10. Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C et al (2017) The role of 5-HT2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progenitors. Br J Pharmacol 174(22):4123–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weill A, Païta M, Tuppin P, Fagot J-P, Neumann A, Simon D et al (2010) Benfluorex and valvular heart disease: a cohort study of a million people with diabetes mellitus. Pharmacoepidemiol Drug Saf 19(12):1256–1262

    Article  CAS  PubMed  Google Scholar 

  12. Dahl CF, Allen MR, Urie PM, Hopkins PN (2008) Valvular regurgitation and surgery associated with fenfluramine use: an analysis of 5743 individuals. BMC Med 6:34

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104(21):2525–2532

    Article  CAS  PubMed  Google Scholar 

  14. Manivet P, Schneider B, Smith JC, Choi D-S, Maroteaux L, Kellermann O et al (2002) The serotonin binding site of human and murine 5-HT2B receptors molecular modeling and site-directed mutagenesis. J Biol Chem 277(19):17170–17178

    Article  CAS  PubMed  Google Scholar 

  15. Oyama MA, Chittur SV (2006) Genomic expression patterns of mitral valve tissues from dogs with degenerative mitral valve disease. Am J Vet Res 67(8):1307–1318

    Article  CAS  PubMed  Google Scholar 

  16. Elangbam CS, Lightfoot RM, Yoon LW, Creech DR, Geske RS, Crumbley CW et al (2005) 5-hydroxytryptamine (5HT) receptors in the heart valves of Cynomolgus monkeys and Sprague-Dawley rats. J Histochem Cytochem 53(5):671–677

    Article  CAS  PubMed  Google Scholar 

  17. Elangbam CS, Job LE, Zadrozny LM, Barton JC, Yoon LW, Gates LD et al (2008) 5-Hydroxytryptamine (5HT)-induced valvulopathy: Compositional valvular alterations are associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley rats. Exp Toxicol Pathol 60(4–5):253–262

    Article  PubMed  Google Scholar 

  18. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA et al (2000) Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57(1):75–81

    CAS  PubMed  Google Scholar 

  19. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B et al (2003) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63(6):1223–1229

    Article  CAS  PubMed  Google Scholar 

  20. Cremer SE, Moesgaard SG, Rasmussen CE, Zois NE, Falk T, Reimann MJ et al (2015) Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease. Res Vet Sci 100:197–206

    Article  CAS  PubMed  Google Scholar 

  21. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J et al (2002) Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am J Pathol 161(6):2209–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roy A, Brand NJ, Yacoub MH (2000) Expression of 5-hydroxytryptamine receptor subtype messenger RNA in interstitial cells from human heart valves. J Heart Valve Dis 9(2):256–260. discussion 260–261

    CAS  PubMed  Google Scholar 

  23. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I (2004) Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14(7):621–633

    Article  CAS  PubMed  Google Scholar 

  24. Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171(5):1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoen FJ (2006) New frontiers in the pathology and therapy of heart valve disease: 2006 Society for Cardiovascular Pathology, distinguished achievement award lecture, United States–Canadian Academy of Pathology, Atlanta, GA, February 12, 2006. Cardiovasc Pathol 15(5):271–279

    Article  PubMed  Google Scholar 

  26. Aupperle H, Disatian S (2012) Pathology, protein expression and signaling in myxomatous mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14(1):59–71

    Article  PubMed  Google Scholar 

  27. Barzilla JE, Acevedo FE, Grande-Allen KJ (2010) Organ culture as a tool to identify early mechanisms of serotonergic valve disease. J Heart Valve Dis 19(5):626–635

    PubMed  Google Scholar 

  28. Taylor PM, Allen SP, Yacoub MH (2000) Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 9(1):150–158

    CAS  PubMed  Google Scholar 

  29. Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF, Aikawa M et al (2006) Human semilunar cardiac valve remodeling by activated cells from fetus to adult implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113(10):1344–1352

    Article  PubMed  Google Scholar 

  30. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H et al (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26(1):69–77

    Article  CAS  PubMed  Google Scholar 

  31. Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res 96(7):792–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res 4(6):710–719

    Article  PubMed  Google Scholar 

  33. Lu C-C, Liu M-M, Culshaw G, Clinton M, Argyle DJ, Corcoran BM (2015) Gene network and canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. Vet J 204(1):23–31

    Article  CAS  PubMed  Google Scholar 

  34. Hulin A, Deroanne C, Lambert C, Defraigne J-O, Nusgens B, Radermecker M et al (2013) Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 22(4):245–250

    Article  CAS  Google Scholar 

  35. Driesbaugh KH, Branchetti E, Grau JB, Keeney SJ, Glass K, Oyama MA et al (2017) Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation. J Mol Cell Cardiol 115:94–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Nebigil CG, Choi D-S, Dierich A, Hickel P, Le Meur M, Messaddeq N et al (2000) Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97(17):9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nebigil CG, Launay J-M, Hickel P, Tournois C, Maroteaux L (2000) 5-hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci USA 97(6):2591–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hafizi S, Taylor PM, Chester AH, Allen SP, Yacoub MH (2000) Mitogenic and secretory responses of human valve interstitial cells to vasoactive agents. J Heart Valve Dis 9(3):454–458

    CAS  PubMed  Google Scholar 

  39. Connolly JM, Bakay MA, Fulmer JT, Gorman RC, Gorman JH, Oyama MA et al (2009) Fenfluramine disrupts the mitral valve interstitial cell response to serotonin. Am J Pathol 175(3):988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Droogmans S, Roosens B, Cosyns B, Degaillier C, Hernot S, Weytjens C et al (2009) Cyproheptadine prevents pergolide-induced valvulopathy in rats: an echocardiographic and histopathological study. Am J Physiol Heart Circ Physiol 296(6):H1940–H1948

    Article  CAS  PubMed  Google Scholar 

  41. Elangbam CS, Wehe JG, Barton JC, Krull DL, Nyska A, Crabbs T et al (2006) Evaluation of glycosaminoglycans content and 5-hydroxytryptamine 2B receptor in the heart valves of Sprague-Dawley rats with spontaneous mitral valvulopathy—a possible exacerbation by dl-amphetamine sulfate in Fischer 344 rats? Exp Toxicol Pathol Off J Ges Toxikol Pathol 58(2–3):89–99

    Article  CAS  Google Scholar 

  42. Balachandran K, Bakay MA, Connolly JM, Zhang X, Yoganathan AP, Levy RJ (2011) Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg 92(1):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  43. Balachandran K, Hussain S, Yap C-H, Padala M, Chester AH, Yoganathan AP (2012) Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT(2A) receptor-dependent pathway. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 21(3):206–213

    Article  CAS  Google Scholar 

  44. Jian B, Xu J, Connolly J, Savani RC, Narula N, Liang B et al (2002) Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol 161(6):2111–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay J-M et al (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by ventricular fibroblasts. Circulation 110(8):969–974

    Article  PubMed  CAS  Google Scholar 

  46. Yabanoglu S, Akkiki M, Seguelas M-H, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46(4):518–525

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J et al (2002) Serotonin mechanisms in heart valve disease II. Am J Pathol 161(6):2209–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352(6333):337–339

    Article  CAS  PubMed  Google Scholar 

  49. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R et al (2003) Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278(4):2750–2757

    Article  CAS  PubMed  Google Scholar 

  50. Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D et al (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114(11):1586–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3):275–281

    Article  CAS  PubMed  Google Scholar 

  52. Hutcheson JD, Ryzhova LM, Setola V, Merryman WD (2012) 5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol 53(5):707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. West JD, Carrier EJ, Bloodworth NC, Schroer AK, Chen P, Ryzhova LM et al (2017) Serotonin 2b receptor antagonism prevents heritable pulmonary arterial hypertension. PLoS One 11(2):e.0148657. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749293/

    Article  CAS  Google Scholar 

  54. Visconti RP, Ebihara Y, LaRue AC, Fleming PA, McQuinn TC, Masuya M et al (2006) An In vivo analysis of hematopoietic stem cell potential hematopoietic origin of cardiac valve interstitial cells. Circ Res 98(5):690–696

    Article  CAS  PubMed  Google Scholar 

  55. Hajdu Z, Romeo SJ, Fleming PA, Markwald RR, Visconti RP, Drake CJ (2011) Recruitment of bone marrow-derived valve interstitial cells is a normal homeostatic process. J Mol Cell Cardiol 51(6):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ayme-Dietrich E, Lawson R, Gasser B, Dallemand R, Bischoff N, Monassier L (2012) Mitral bioprosthesis hypertrophic scaring and native aortic valve fibrosis during benfluorex therapy. Fundam Clin Pharmacol 26(2):215–218

    Article  CAS  PubMed  Google Scholar 

  57. Launay J-M, Hervé P, Callebert J, Mallat Z, Collet C, Doly S et al (2012) Serotonin 5-HT2B receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood 119(7):1772–1780

    Article  CAS  PubMed  Google Scholar 

  58. Huang X-P, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ et al (2009) Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment. Mol Pharmacol 76(4):710–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Janoshazi A, Deraet M, Callebert J, Setola V, Guenther S, Saubamea B et al (2007) Modified receptor internalization upon co-expression of 5-HT1B receptor and 5-HT2B receptors. Mol Pharmacol 71(6):1463–1474

    Article  CAS  PubMed  Google Scholar 

  60. Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S et al (2009) Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 104(1):113–123

    Article  PubMed  CAS  Google Scholar 

  61. Perez J, Diaz N, Tandon I, Plate R, Martindale C, Balachandran K (2017) Elevated serotonin interacts with angiotensin-II to result in altered valve interstitial cell contractility and remodeling. Cardiovasc Eng Technol 28:1–13

    Google Scholar 

  62. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA et al (2019) Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet 394(10216):2263–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wylie-Sears J, Levine R, Bischoff J (2014) Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor-β-induced phosphorylation of ERK. Biochem Biophys Res Commun 446(4):870–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S (2017) Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT2C protomers. J Biol Chem 292(15):6352–6368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bohn LM, Schmid CL (2010) Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 45(6):555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340(6132):615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCorvy JD, Roth BL (2015) Structure and function of serotonin G protein-coupled receptors. Pharmacol Ther 150:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martí-Solano M, Sanz F, Pastor M, Selent J (2014) A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity. PLoS One 9(10):e109312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Unett DJ, Gatlin J, Anthony TL, Buzard DJ, Chang S, Chen C et al (2013) Kinetics of 5-HT2B receptor signaling: profound agonist-dependent effects on signaling onset and duration. J Pharmacol Exp Ther 347(3):645–659

    Article  CAS  PubMed  Google Scholar 

  70. Lepor NE, Gross SB, Daley WL, Samuels BA, Rizzo MJ, Luko SP et al (2000) Dose and duration of fenfluramine-phentermine therapy impacts the risk of significant valvular heart disease. Am J Cardiol 86(1):107–110

    Article  CAS  PubMed  Google Scholar 

  71. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356(1):29–38

    Article  CAS  PubMed  Google Scholar 

  72. Cavero I, Guillon J-M (2014) Safety Pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy. J Pharmacol Toxicol Methods 69(2):150–161

    Article  CAS  PubMed  Google Scholar 

  73. Papoian T, Jagadeesh G, Saulnier M, Simpson N, Ravindran A, Yang B et al (2017) Regulatory forum review: utility of in vitro secondary pharmacology data to assess risk of drug-induced valvular heart disease in humans: regulatory considerations. Toxicol Pathol 45(3):381–388

    Article  CAS  PubMed  Google Scholar 

  74. Schoonjans A-S, Marchau F, Paelinck BP, Lagae L, Gammaitoni A, Pringsheim M et al (2017) Cardiovascular safety of low-dose fenfluramine in Dravet syndrome: a review of its benefit-risk profile in a new patient population. Curr Med Res Opin 33(10):1773–1781

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Ayme-Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnoux, A., Ayme-Dietrich, E. (2021). The Discovery of 5-HT2B Receptor Pharmacology Through the Understanding of Drug-Induced Valvulopathy. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_12

Download citation

Publish with us

Policies and ethics