Skip to main content

Systematisation of Systems Solving Physics Boundary Value Problems

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Abstract

A general conservation law that defines a class of physical field theories is constructed. First, the notion of a general field is introduced as a formal sum of differential forms on a Minkowski manifold. By the action principle the conservation law is defined for such a general field. By construction, particular field notions of physics, e.g., magnetic flux, electric field strength, stress, strain etc. become instances of the general field. Hence, the differential equations that constitute physical field theories become also instances of the general conservation law. The general field and the general conservation law together correspond to a large class of relativistic hyperbolic physical field models. The parabolic and elliptic models can thereafter be derived by adding constraints. The approach creates solid foundations for developing software systems for scientific computing; the unifying structure shared by the class of field models makes it possible to implement software systems which are not restricted to certain predefined problems. The versatility of the proposed approach is demonstrated by numerical experiments with moving and deforming domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Abraham and J. E. Marsden. Foundations of mechanics, 2 ed. Addison-Wesley, 1987.

    Google Scholar 

  2. M.F. Atiyah. Duality in Mathematics and Physics. http://www.iecl.univ-lorraine.fr/~Wolfgang.Bertram/Atiyah-Duality.pdf.

  3. J. Baez and J.P. Muniain. Gauge Fields, Knots and Gravity. Series on Knots and Everything, vol. 4, World Scientific, 1994.

    Google Scholar 

  4. D. Bleecker. Gauge theories and variational principles. Addison-Wesley, 1981.

    MATH  Google Scholar 

  5. A. Bossavit. Computational electromagnetism. Academic Press, 1997.

    MATH  Google Scholar 

  6. A. Bossavit. Compel 20 (2001), no. 1, 233–239.

    Google Scholar 

  7. A. Bossavit and L. Kettunen. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 12 (1999), 129–142.

    Google Scholar 

  8. P. G. Ciarlet. The finite element method for elliptic problems. Artech House Publishers, 1978.

    MATH  Google Scholar 

  9. Comsol Inc. COMSOL Multiphysics. http://www.comsol.com.

  10. P. Dular and C. Geuzaine. GetDP a General Environment for the Treatment of Discrete Problems. http://getdp.info.

  11. R. P. Feynman et al. The Feynman lectures on physics, vol. 2 & 3. Addison-Wesley Pub. Co., 1963.

    Google Scholar 

  12. H. Flanders. Differential forms with application to the physical sciences. Dover,1989.

    MATH  Google Scholar 

  13. T. Frankel. The geometry of physics, an introduction, 3. ed. Cambridge Univ. Press, 2012.

    Google Scholar 

  14. A. Frölicher and A. Nijenhuis. Indagationes Mathematicae (Proceedings) 59 (1956), 338–350.

    Article  Google Scholar 

  15. J. E. Gilbert and M. A. M. Murray. Clifford algebras and Dirac operators in harmonic analysis, vol.26. Cambridge Univ. Press, 1991.

    Google Scholar 

  16. A. N. Hirani. Discrete exterior calculus. Ph.D. thesis, Caltech, Pasadena, California, 5 2003.

    Google Scholar 

  17. W. V. D. Hodge. Proc. London Math. Soc. 36 (1934), 257–303.

    Article  MathSciNet  Google Scholar 

  18. W. V. D. Hodge. The theory and applications of harmonic integrals. Cambridge Univ. Press, 1941.

    MATH  Google Scholar 

  19. E. Kanso, M. Arroyo, Y. Tong, A. Yavari, J. E. Marsden, and M. Desbruni. Z. Angew. Math. Phys. 58 (2007), 1–14.

    Article  MathSciNet  Google Scholar 

  20. L. Kettunen, S. Mönkölä, J. Parkkonen, and T. Rossi. arXiv:1908.10634v1, Submitted.

    Google Scholar 

  21. S. Kobayashi and K. Nomizu. Foundations of differential geometry, vol. 1. Wiley Interscience, 1963.

    Google Scholar 

  22. H. Lindqvist et al. Journal of Quantitative Spectroscopy and Radiative Transfer 217 (2018), 329–337.

    Article  Google Scholar 

  23. nLab authors. Gauge theory. http://ncatlab.org/nlab/show/gauge%20theory, August 2019, Revision 56.

  24. P. Petersen. Riemannian geometry, 3. ed. Springer, 2016.

    Google Scholar 

  25. J. Räbinä et al. SIAM Journal on Scientific Computing, 37 (2015), no. 6, B834-B854.

    Google Scholar 

  26. J. Räbinä et al. ESAIM: Mathematical Modelling and Numerical Analysis 52 (2018), no. 3, 1195–1218.

    Google Scholar 

  27. J. Räbinä et al. Phys. Rev. A. 98 (2018), no. 2.

    Google Scholar 

  28. J. Räbinä et al. Journal of Quantitative Spectroscopy and Radiative Transfer 178 (2016), 295–305.

    Article  Google Scholar 

  29. R. Segev. Arch. Ration. Mech. Anal. 154 (2000), 183–198.

    Article  MathSciNet  Google Scholar 

  30. R. Segev. J. Math. Phys. 43 (2002), 3220–3231.

    Article  MathSciNet  Google Scholar 

  31. R. Segev and G. Rodnay. J. Elasticity 56 (1999), 129–144.

    Article  MathSciNet  Google Scholar 

  32. P. Stefanov and G. Vodev. Commun. Math. Phys. 176 (1996), 645–659.

    Article  Google Scholar 

  33. J. A. Stratton. Electromagnetic theory. McGraw-Hill Company, 1941.

    Google Scholar 

  34. A. Taflove and S. C. Hagness. Computational electrodynamics: The finite-difference time-domain method, 3. ed. North-Holland Publishing Company, 2005.

    Google Scholar 

  35. T. Tao and G. Tian. J. Am. Math. Soc. 17 (2004), no. 3, 557–593.

    Article  Google Scholar 

  36. T. Tarhasaari et al. IEEE Transactions on Magnetics 35 (1999), no. 3, 1494–7.

    Google Scholar 

  37. C. N. Yang. Physics today 67 (2014), no. 11, 45–51.

    Google Scholar 

  38. C. N. Yang and R. Mills. Phys. Rev. 96 (1954), no. 1, 191–195.

    Article  MathSciNet  Google Scholar 

  39. K. Yee. IEEE Transactions on Antennas and Propagation 14 (1966), 302–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomo Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rossi, T., Räbinä, J., Mönkölä, S., Kiiskinen, S., Lohi, J., Kettunen, L. (2021). Systematisation of Systems Solving Physics Boundary Value Problems. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_3

Download citation

Publish with us

Policies and ethics