Skip to main content

On the Dirichlet-to-Neumann Coarse Space for Solving the Helmholtz Problem Using Domain Decomposition

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2019

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 139))

Abstract

We examine the use of the Dirichlet-to-Neumann coarse space within an additive Schwarz method to solve the Helmholtz equation in 2D. In particular, we focus on the selection of how many eigenfunctions should go into the coarse space. We find that wave number independent convergence of a preconditioned iterative method can be achieved in certain special cases with an appropriate and novel choice of threshold in the selection criteria. However, this property is lost in a more general setting, including the heterogeneous problem. Nonetheless, the approach converges in a small number of iterations for the homogeneous problem even for relatively large wave numbers and is robust to the number of subdomains used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that if ΓR = ∅ then the problem will be ill-posed for certain choices of k corresponding to Dirichlet eigenvalues of the corresponding Laplace problem.

References

  1. Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bootland, N.: Coarse Spaces for Helmholtz. Scottish Numerical Methods Network Workshop on Iterative Methods for Partial Differential Equations. 2019, http://personal.strath.ac.uk/jennifer.pestana/lms19/Bootland.pdf Bootland, N., Dolean, V., Jolivet, P.: A GenEO-type coarse space for heterogeneous Helmholtz problems (2019). In preparation

  3. Conen, L., Dolean, V., Krause, R., Nataf, F.: A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator. J. Comput. Appl. Math. 271, 83–99 (2014)

    Article  MathSciNet  Google Scholar 

  4. Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, vol. 144. SIAM (2015)

    Google Scholar 

  5. Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.) Numerical Analysis of Multiscale Problems, pp. 325–363. Springer (2012)

    Google Scholar 

  6. Nataf, F., Xiang, H., Dolean, V., Spillane, N.: A coarse space construction based on local Dirichlet-to-Neumann maps. SIAM J. Sci. Comput. 33(4), 1623–1642 (2011)

    Article  MathSciNet  Google Scholar 

  7. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  8. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall Bootland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bootland, N., Dolean, V. (2021). On the Dirichlet-to-Neumann Coarse Space for Solving the Helmholtz Problem Using Domain Decomposition. In: Vermolen, F.J., Vuik, C. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and Engineering, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1_16

Download citation

Publish with us

Policies and ethics