Skip to main content

Applications and Challenges of Cloud Integrated IoMT

  • Chapter
  • First Online:
Cognitive Internet of Medical Things for Smart Healthcare

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 311))

Abstract

The Internet of Medical Things (IoMT) refers to the medical devices and applications that connect healthcare information technology (IT) systems via computer networks. This chapter focuses on different aspects including the strengths, weakness, prospects and challenges of the IoMT integrated cloud computing. First of all, a gap analysis has been performed which indicates that there are some limitations in the existing computation capability, communication protocols, scalability, infrastructure, data security, etc. of IoMT. Secondly, different characteristics of cloud computing including resource polling, on demand services, access network, and security as well as privacy issues are discussed. Thirdly, a framework for IoT healthcare network (IoThNet) is presented which illustrates how hospitals at access layer can collect user information at data persistent layer. Next, the local storage and cloud storage platforms of IoThNet are briefly explained. A communication system is described then where a patient is monitored by the transmission of medical data via the wearable sensors on the patient. We propose a cloud integrated IoMT framework and compare it with the existing frameworks reported in the literature. Patients and their relatives, doctors can use this framework to get the health status of the patients and get alert in case of emergency conditions. Next discussion is provided on a number of healthcare services for instance adverse drug reaction, and on healthcare applications such as glucose level sensing and wheelchair management. A description is also provided on how IoMT can help support different diseases with the help of sensors for example, glucose, pulse, temperature, blood pressure, heart rate, force, etc. sensors. Finally, smartphone applications (apps) for diagnosis, drug reference, medical education and clinical communication are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., Boyle, D.: From Machine-to Machine to the Internet of Things: Introduction to a New Age of Intelligence. Elsevier, Amsterdam (2014)

    Google Scholar 

  2. Bharati, S., Podder, P., Mondal, M.R.H., Robel, M.R.A.: Threats and countermeasures of cyber security in direct and remote vehicle communication systems. J. Inf. Assur. Secur. 15(4), 153–164 (2020)

    Google Scholar 

  3. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.: The Internet of Things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

    Article  Google Scholar 

  4. Pang, Z.: Technologies and architectures of the Internet-of-Things (IoT) for health and well-being. M.S. thesis, Depart. Electron. Comput. Syst., KTH-Roy. Inst. Technol., Stockholm, Sweden, Jan (2013)

    Google Scholar 

  5. Truong, H.L., Dustdar, S.: Principles for engineering IoT cloud systems. IEEE Cloud Comput. 2, 68–76 (2015)

    Article  Google Scholar 

  6. Robel M.R.A., Bharati S., Podder P., Raihan-Al-Masud M., Mandal S.: Fault tolerance in cloud computing- an algorithmic approach. In: Abraham, A., Panda, M., Pradhan, S., Garcia-Hernandez, L., Ma, K. (eds.) Innovations in Bio-Inspired Computing and Applications. IBICA 2019. Advances in Intelligent Systems and Computing, vol 1180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49339-4_31

  7. Internet of Things at a Glance: Available online: https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf. Accessed 23 Feb 2019

  8. Size of the Internet of Things MarketWorldwide in 2014 and 2020, by Industry. Available online: https://www.statista.com/statistics/512673/worldwide-internet-of-things-market/. Accessed on 24 Feb 2019

  9. Borgia, E.: The internet of things vision: key features, applications, and open issues. Comput. Commun. 54, 1–31 (2014)

    Article  Google Scholar 

  10. Bhushan, B., Khamparia, A., Sagayam, K. M., Sharma, S. K., Ahad, M. A., and Debnath, N. C.: Blockchain for smart cities: a review of architectures, integration trends and future research directions. Sustainable. Cities. Soc. 61:102360 (2020). https://doi.org/10.1016/j.scs.2020.102360

  11. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of internet-of-things platforms. Comput. Commun. (2016). https://doi.org/10.1016/j.comcom.2016.03.015

    Article  Google Scholar 

  12. Muhammad, K., Ahmad, J., Rho, S., Baik, S.: Image steganography for authenticity of visual contents in social networks. Multimedia Tools Appl. 1–20 (2017)

    Google Scholar 

  13. Muhammad, K., Sajjad, M., Lee, M. Y., Baik, S.W.: Efficient visual attention driven framework for key frames extraction from hysteroscopy videos. Biomed. Signal Process. Control. 33, 161–168 (2017)

    Google Scholar 

  14. Khamparia, A., Gupta, D., de Albuquerque, V.H.C., et al.: Internet of health things-driven deep learning system for detection and classification of cervical cells using transfer learning. J. Supercomput. (2020). https://doi.org/10.1007/s11227-020-03159-4

    Article  Google Scholar 

  15. Bharati, S., Podder, P., Mondal, M.R.H.: Hybrid deep learning for detecting lung diseases from X-ray images. Inform. Med. Unlocked, 20:100391 (2020). https://doi.org/10.1016/j.imu.2020.100391

  16. Shahariar Parvez, A.H.M., Robiul Alam Robel, M., Rouf, M.A., Podder, P., Bharati, S.: Effect of fault tolerance in the field of cloud computing. In: Smys, S., Bestak, R., Rocha, Á. (eds.) Inventive Computation Technologies. ICICIT 2019. Lecture Notes in Networks and Systems, vol. 98. Springer, Cham (2020)

    Google Scholar 

  17. Katz, R., Goldstein, P., Yanosky, R.: Cloud computing in higher. EDUCAUSE (2010). http://net.educause.edu/sectionparams/conf/CCW10/highered.pdf

  18. Chang, V.: An overview, examples, and impacts offered by emerging services and analytics in cloud computing virtual reality. Neural Comput. Appl. 29, 1243–1256 (2018). https://doi.org/10.1007/s00521-017-3000-1

    Article  Google Scholar 

  19. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Fut. Gener. Comput. Syst. 25(6), 559–616 (2009)

    Google Scholar 

  20. Granell, C., Havlik, D., Schade, S., Sabeur, Z., Delaney, C., Pielorz, J., Thomas, U., Mazzetti, P., Schleidt, K., Kobernus, M., Havlik, F., Bodsberg, N., Berre, A., Lorenzo, J.: Future internet technologies for environmental applications. Environ. Model. Softw. 15(78) (2016)

    Google Scholar 

  21. Flammini, A., Sisinni, E.: Wireless sensor networking in the internet of things and cloud computing era. Proced. Eng. 87, 672–679 (2014)

    Article  Google Scholar 

  22. Martin, R.: Japan is best prepared to capitalize on cloud computing (2012). http://www.techinasia.com/japan-cloud-cloud-computing/

  23. Venters, W.: A critical review of cloud computing: researching desires and realities. J. Inf. Technol. 27, 79–97 (2012)

    Article  Google Scholar 

  24. Gutub, A., Alharth, N.: Improving Hajj and Umrah services utilizing exploratory data visualization techniques. Hajj forum 2016—the 16th scientific Hajj research Forum, organized by the custodian of the two holy Mosques Institute for Hajj Research. Umm Al-Qura University—King Abdulaziz Historical Hall, Makkah, pp. 561–572 (2016)

    Google Scholar 

  25. Berry, R., Reisman, M.: Policy challenges of cross-border cloud computing. J. Int. Commer. Econ. 4(2), 1–38 (2012)

    Google Scholar 

  26. Wang, W., Li, J., Wang, L., Zhao, W.: The Internet of Things for resident health information service platform research. In: Proceedings of IET International Conference Communication Technology Applications (ICCTA), Oct 2011, pp. 631–635

    Google Scholar 

  27. Yang, L., Ge, Y., Li, W., Rao, W., Shen, W.: A home mobile healthcare system for wheelchair users. In: Proceedings of IEEE International Conference Computer Supported Cooperative Work Design (CSCWD), May 2014, pp. 609–614

    Google Scholar 

  28. Darwish, A., Hassanien, A.E., Elhoseny, M., et al.: The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J. Ambient Intell. Human. Comput. 10, 4151–4166 (2019). https://doi.org/10.1007/s12652-017-0659-1

    Article  Google Scholar 

  29. Jara, A.J., Zamora-Izquierdo, M.A., Skarmeta, A.F.: Interconnection framework for mHealth and remote monitoring based on the Internet of Things. IEEE J. Sel. Areas Commun. 31(9), 47–65 (2013)

    Article  Google Scholar 

  30. Bharati, S., Podder, P. and Mondal, M.R.H.: Artificial neural network based breast cancer screening: a comprehensive review. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 12, 125–137 (2020).

    Google Scholar 

  31. Jia, X., Chen, H., Qi, F.: Technical models and key technologies of e-health monitoring. In: Proceedings of IEEE International Conference on e-Health Network, Applications and Services (Healthcom), Oct 2012, pp. 23–26

    Google Scholar 

  32. Miori, V., Russo, D.: Anticipating health hazards through an ontology-based, IoT domotic environment. In: Proceedings of 6th International Conference on Innov. Mobile Internet Services Ubiquitous Computing (IMIS), July 2012, pp. 745–750

    Google Scholar 

  33. Ali, M., Bilal, H.S.M., Razzaq, M.A., Khan, J., Lee, S., Idris, M., Aazam, M., Choi, T., Han, S.C., Kang, B.H.: IoTFLiP: IoT-based flipped learning platform for medical education. Digit. Commun. Netw. 3, 188–194 (2017)

    Article  Google Scholar 

  34. Podder, P., Bharati, S., Robel, M.R.A., Raihan-Al-Masud, M., Rahman, M.A.: Uplink and downlink spectral efficiency estimation for multi antenna MIMO user. In: Abraham, A., Panda, M., Pradhan, S., Garcia-Hernandez, L., Ma, K. (eds.) Innovations in Bio-Inspired Computing and Applications. IBICA 2019. Advances in Intelligent Systems and Computing, vol. 1180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49339-4_29

  35. Verma, P., Sood, S.K., Kalra, S.: Cloud-centric IoT based student healthcare monitoring framework. J. Ambient Intell. Human. Comput. 9, 1293–1309 (2018). https://doi.org/10.1007/s12652-017-0520-6

    Article  Google Scholar 

  36. Abideen, Z.U.; Shah, M.A. (2017). An IoT based robust healthcare model for continuous health monitoring. In: Proceedings of the 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 Sept 2017, pp. 1–6

    Google Scholar 

  37. Sarker, N., Islam, M.A., Mondal, M.R.H.: Two novel multiband centimetre-wave patch antennas for a novel OFDM based RFID system. J. Commun. (JCM) 13(6) (2018)

    Google Scholar 

  38. Bharati, S., Podder, P.: Adaptive PAPR reduction scheme for OFDM using SLM with the fusion of proposed clipping and filtering technique in order to diminish PAPR and signal distortion. Wirel. Pers. Commun. 113, 2271–2288 (2020). https://doi.org/10.1007/s11277-020-07323-0

  39. Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Fut. Gener. Comput. Syst. 78, 641–658 (2018)

    Article  Google Scholar 

  40. Luhach, A.K., Khamparia, A., Sihag, R., Kumar, R.: Honey bee optimization based sink mobility aware heterogeneous protocol for wireless sensor network. Scalable Comput. Pract. Exp. 20(4), 591–598, (2020)

    Google Scholar 

  41. Nguyen, D.C., Nguyen, K.D., Pathirana, P.N.: A mobile cloud based IoMT framework for automated health assessment and management. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 6517–6520 (2019). 10.1109/EMBC.2019.8856631

    Google Scholar 

  42. Zhao, W., Wang, C., Nakahira, Y.: Medical application on internet of things. In: Proceedings of IET International Conference on Communication Technology and Application (ICCTA 2011), pp. 660–665, Beijing, China (2011)

    Google Scholar 

  43. Yang, G., Xie, L., Mäntysalo, M., et al.: A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014)

    Article  Google Scholar 

  44. Gong, T., Huang, H., Li, P., Zhang, K., Jiang, H.: A medical healthcare system for privacy protection based on IoT. In: Proceedings of the Parallel Architectures, Algorithms and Programming (PAAP), 2015 Seventh International Symposium on, pp. 217–222, Dec 2015

    Google Scholar 

  45. Pasha, M., Shah, S.M.W.: Framework for E-health systems in IoT-based environments. Wireless Commun. Mobile Comput. 2018. Article ID 6183732 (2018). https://doi.org/10.1155/2018/6183732

  46. Raihan-Al-Masud, M., Mondal, M.R.H.: Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE 15(2), e0228422 (2020)

    Article  Google Scholar 

  47. Bharati, S., Podder, P., Mondal, R., Mahmood, A., Raihan-Al-Masud, M.: Comparative performance analysis of different classification algorithm for the purpose of prediction of lung cancer. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds.) Intelligent Systems Design and Applications. Advances in Intelligent Systems and Computing, vol. 941, pp. 447–457 (2018)

    Google Scholar 

  48. Mosa, A.S.M., Yoo, I., Sheets, L.: A systematic review of healthcare applications for smartphones. BMC Med. Inf. Des. Making 12, 67 (2012)

    Article  Google Scholar 

  49. [Online]. Available: http://www.medicaljoyworks.com. Last accessed on 20 Apr 2020

  50. [Online]. Available: http://www.prognosisapp.com. Last accessed on 20 Apr 2020

  51. [Online]. Available: http://www.imedicalapps.com/2014/01/diagnoseapp-evidence-based-clinical-decision. Last Accessed on 20 Apr 2020

  52. [Online]. Available: http://www.eagleget.com/apps/apk-file/4470. Last accessed on 20 Apr 2020

  53. [Online]. Available: https://www.apple.com/itunes/charts. Last accessed on 20 Apr 2020

  54. [Online]. Available: https://play.google.com/store/apps?hl=en. Last accessed on 20 Apr 2020

  55. White, P.J.F., Podaima, B.W., Friesen, M.R.: Algorithms for smartphone and tablet image analysis for healthcare applications. IEEE Access 2, 831840 (2014)

    Article  Google Scholar 

  56. Gia, T.N., Ali, M., Dhaou, I.B., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: IoT-based continuous glucose monitoring system: a feasibility study. Procedia Comput. Sci. 109, 327–334 (2017)

    Article  Google Scholar 

  57. Sunny, S.; Kumar, S.S. Optical based non invasive glucometer with IoT. In: Proceedings of the 2018 International Conference on Power, Signals, Control and Computation (EPSCICON), Thrissur, India, 6–10 Jan 2018; pp. 1–3

    Google Scholar 

  58. AL-Jaf, T.G., Al-Hemiary, E.H.: Internet of Things based cloud smart monitoring for asthma patient. In: Proceedings of the 1st International Conference on Information Technology (ICoIT’17), Erbil, Iraq, 10 Apr 2017, p. 380

    Google Scholar 

  59. Raji, A., Devi, P.K., Jeyaseeli, P.G., Balaganesh, N.: Respiratory monitoring system for asthma patients based on IoT. In: Proceedings of the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, 19 Nov 2016; pp. 1–6

    Google Scholar 

  60. Satija, U., Ramkumar, B., Manikandan, M.S.: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet Things J. 4, 815–823 (2017)

    Article  Google Scholar 

  61. Beach, C., Krachunov, S., Pope, J., Fafoutis, X., Piechocki, R.J., Craddock, I., Casson, A.J.: An ultra low power personalizable wrist worn ECG monitor integrated with IoT infrastructure. IEEE Access 6, 44010–44021 (2018)

    Article  Google Scholar 

  62. Sobya, D., Muruganandham, S., Nallusamy, S., Chakraborty, P.: Wireless ECG monitoring system using IoT based signal conditioning module for real time signal acquisition. Indian J. Publ. Health Res. Dev. 9, 294–299 (2018)

    Article  Google Scholar 

  63. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: D-ECG: a dynamic framework for cardiac arrhythmia detection from IoT-based ECGs. In: Proceedings of the International Conference on Web Information Systems Engineering, Dubai, UAE, 12–15 Nov 2018; pp. 85–99

    Google Scholar 

  64. Bansal, M., Gandhi, B.: IoT based smart health care system using CNT electrodes (for continuous ECG monitoring). In: Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017, pp. 1324–1329

    Google Scholar 

  65. Xin, Q., Wu, J.: A novel wearable device for continuous, non-invasion blood pressure measurement. Comput. Biol. Chem. 69, 134–137 (2017)

    Article  Google Scholar 

  66. Chao, P.C.P., Tu, T.Y.: Using the time-domain characterization for estimation continuous blood pressure via neural network method. In: ASME 2017 Conference on Information Storage and Processing Systems collocated with the ASME 2017 Conference on Information Storage and Processing Systems, San Francisco, CA, USA, 29–30 Aug 2017; p. V001T02A003

    Google Scholar 

  67. Huang, M., Tamura, T., Tang, Z., Chen, W., Kanaya, S.: A Wearable thermometry for core body temperature measurement and its experimental verification. IEEE J. Biomed. Health Inform. 21, 708–714 (2017)

    Article  Google Scholar 

  68. Li, Q., Zhang, L.N., Tao, X.M., Ding, X.: Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater. 6, 1601371 (2017)

    Article  Google Scholar 

  69. Ota, H., Chao, M., Gao, Y., Wu, E., Tai, L.C., Chen, K., Matsuoka, Y., Iwai, K., Fahad, H.M., Gao, W., et al.: 3d printed “earable” smart devices for real-time detection of core body temperature. ACS Sens. 2, 990–997 (2017)

    Article  Google Scholar 

  70. Ghorbel, A., Bouguerra, S., Amor, N.B., Jallouli, M.: Cloud based mobile application for remote control of intelligent wheelchair. In: Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 1249–1254

    Google Scholar 

  71. Lee, Y.K.; Lim, J.M.; Eu, K.S.; Goh, Y.H.; Tew, Y. Real time image processing based obstacle avoidance and navigation system for autonomous wheelchair application. In: Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, Malaysia, 12–15 Dec 2017; pp. 380–385

    Google Scholar 

  72. Subhash, K., Pournami, P., Joseph, P.K.: Census transform based feature extraction of EMG signals for neuromuscular disease classification. In: Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Putrajaya, Malaysia, 13–14 Dec 2017; pp. 499–503

    Google Scholar 

  73. Sadiq Iqbal, M., Nasim Akhtar, M., Shahariar Parvez, A.H.M., Bharati, S., Podder, P.: Ensemble learning-based EEG feature vector analysis for brain computer interface. In: Suma, V., Bouhmala, N., Wang, H. (eds.) Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering and Communications Technologies, vol. 53. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5258-8_88

  74. Wazid, M., Das, A.K., Rodrigues, J.J.P.C., Shetty, S., Park, Y.: IoMT malware detection approaches: analysis and research challenges. IEEE Access 7, 182459–182476 (2019)

    Article  Google Scholar 

  75. Podder, P., Mondal, M.R.H., Bharati, B., Paul, P.K.: Review on the security threats of internet of things. Int. J. Comput. Appl. 176 (41), 37–45 (2020). https://doi.org/10.5120/ijca2020920548

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajoy Podder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bharati, S., Podder, P., Mondal, M.R.H., Paul, P.K. (2021). Applications and Challenges of Cloud Integrated IoMT. In: Hassanien, A.E., Khamparia, A., Gupta, D., Shankar, K., Slowik, A. (eds) Cognitive Internet of Medical Things for Smart Healthcare. Studies in Systems, Decision and Control, vol 311. Springer, Cham. https://doi.org/10.1007/978-3-030-55833-8_4

Download citation

Publish with us

Policies and ethics