Skip to main content

Gravity Compensation of Robotic Manipulators Using Non-linear Spring Configurations

  • Conference paper
  • First Online:
Advances in Italian Mechanism Science (IFToMM ITALY 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 91))

Included in the following conference series:

Abstract

This paper addresses the problem of balancing as applied to robotic manipulators. After briefly outlining the existing balancing techniques, this paper proposes to achieve the balancing by adding non-linear springs to compensate gravity. Numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed approach by referring to a pick-and-place task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arakelian, V.: Gravity compensation in robotics. Adv. Robot. 30, 79–96 (2016)

    Article  Google Scholar 

  2. Bayer, A., Merk, G.: Industrial robot with a weight balancing system. EP Patent 2,301,727 (2011)

    Google Scholar 

  3. Russo, A., Sinatra, R., Xi, F.: Static balancing of parallel robots. Mech. Mach. Theory 40, 191–202 (2005)

    Article  MathSciNet  Google Scholar 

  4. Wongratanaphisan, T., Chew, M.: Gravity compensation of spatial two-DOF serial manipulators. J. Robot. Syst. 19, 329–347 (2002)

    Article  Google Scholar 

  5. Agrawal, S.K., Fattah, A.: Gravity-balancing of spatial robotic manipulators. Mech. Mach. Theory 39, 1331–1344 (2004)

    Article  MathSciNet  Google Scholar 

  6. Simionescu, I., Ciupitu, L.: The static balancing of the industrial robot arms: Part I: discrete balancing. Mech. Mach. Theory 35, 1287–1298 (2000)

    Article  Google Scholar 

  7. Kim, H.-S., Song J.-B.: Low-cost robot arm with 3-DOF counterbalance mechanism. In: Proceedings of the International Conference on Robotics and Automation, pp. 4168–4173 (2013)

    Google Scholar 

  8. Ebert-Uphoff, I., Johnson, K.: Practical considerations for the static balancing of mechanisms of parallel architecture. J. Multibody Dyn. Part K 216, 73–85 (2002)

    Google Scholar 

  9. Endo, G., Yamada, H., Yajima, A., et al.: A weight compensation mechanism with a non-circular pulley and a spring: application to a parallel four-bar linkage arm. SICE J. Control Meas. Syst. Integr. 3, 130–136 (2010)

    Article  Google Scholar 

  10. Simionescu, I., Ciupitu, L.: The static balancing of the industrial arms. Part II: continuous balancing. Mech. Mach. Theory 35, 1299–1311 (2000)

    Article  Google Scholar 

  11. Cho, C., Lee, W., Lee, J., et al.: A 2-dof gravity compensator with bevel gears. J. Mech. Sci. Technol. 26, 2913–2919 (2012)

    Article  Google Scholar 

  12. Ciupitu, L.: Adaptive balancing of robots and mechatronic systems. Robotics 7, 68 (2018)

    Article  Google Scholar 

  13. Baradat, C., Arakelian, V., Briot, S., Guegan, S.: Design and prototyping of a new balancing mechanism for spatial parallel manipulators. J. Mech. Des. 130, 072305 (2008)

    Article  Google Scholar 

  14. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal. Process. 125, 4–20 (2019)

    Article  Google Scholar 

  15. Gatti, G.: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Commun. Nonlinear Sci. Numer. Simul. 83, 105143 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Gatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gatti, G., Carbone, G. (2021). Gravity Compensation of Robotic Manipulators Using Non-linear Spring Configurations. In: Niola, V., Gasparetto, A. (eds) Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-030-55807-9_35

Download citation

Publish with us

Policies and ethics