Skip to main content

Features of Discrete Integrability

  • Conference paper
  • First Online:
Quantum Theory and Symmetries

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 1152 Accesses

Abstract

We describe some standard features of integrability for a class of integrable partial difference equations: the quad equations. These features are the existence of Lax pairs, higher dimensional consistency, singularity properties, existence of symmetries, and low complexity (vanishing algebraic entropy). All these features have pros and cons, and we give a glimpse of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Brezin, V. Kazakov, Exactly solvable field theories of closed strings. Phys. Lett. B 236(2), 144–150 (1990)

    Google Scholar 

  2. D. Gross, A. Migdal, Non perturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64(2), 127–130 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. A.S. Fokas, A.R. Its, A.V. Kitaev, Discrete Painlevé equations and their appearance in quantum gravity. Commun. Math. Phys 142, 313–344 (1991)

    Article  ADS  Google Scholar 

  4. R.J. Baxter, The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28, 1–41 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.P. Bellon, J.-M. Maillard, C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: spin models. Phys. Lett. A A 157, 343–353 (1991)

    Google Scholar 

  6. M.P. Bellon, J.-M. Maillard, C.-M. Viallet, Infinite discrete symmetry group for the Yang-Baxter equations: vertex models. Phys. Lett. A B 260, 87–100 (1991)

    Google Scholar 

  7. V.G. Drinfeld, On some unsolved problems in quantum group theory, in “Quantum Groups”, vol. 1510 of Lecture Notes in Math (Springer, 1992), pp. 1–8

    Google Scholar 

  8. M. Hénon, A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability. Cambridge Texts in Applied Mathematics (Cambridge University Press, 2016)

    Google Scholar 

  10. S. Butler, N. Joshi, An inverse scattering transform for the lattice potential KdV equation. Inverse Problems 26, 115012 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Nijhoff, Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A 297, 49–58 (2002). arXiv:nlin.SI/0110027

    Google Scholar 

  12. A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs. Int. Math. Res. Notices 11, 573–611 (2002). arXiv:nlin/0110004

    Google Scholar 

  13. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003). arXiv:nlin.SI/0202024

    Google Scholar 

  14. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Discrete nonlinear hyperbolic equations. Classification of integrable cases. Funct. Anal. Appl. 43, 3–17 (2009). arXiv:0705.1663

    Google Scholar 

  15. C.-M. Viallet, Integrable lattice maps: Q V, a rational version of Q 4. Glasgow Math. J. 51 A, 157–163 (2009). arXiv:0802.0294

    Google Scholar 

  16. A.V. Mikhailov, J.P. Wang, A new recursion operator for Adler’s equation in the Viallet form. Physics Letters A 375, 3960–3963 (2011). arXiv:1105.1269

    Google Scholar 

  17. P.J. Olver, Evolution equations possessing an infinitely many symmetries. J. Math. Phys. 18(6), 1212–1215 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  19. S. Maeda, The similarity method for difference equations. IMA J. Appl. Math. 38, 129 (1987)

    Article  MathSciNet  Google Scholar 

  20. D. Levi, P. Winternitz, Continuous symmetries of difference equations. J. Phys. A Math. Gen. 39, R1–R63 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Levi, R.I. Yamilov, Conditions for the existence of higher symmetries of evolutionary equations on the lattice. J. Math. Phys. 38, 6648–6674 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Levi, R.I. Yamilov, The generalized symmetry method for discrete equations. J. Phys. A Math. Theor. 42, 454012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Levi, R.I. Yamilov, Generalized symmetry integrability test for discrete equations on the square lattice. J. Phys. A Math. Theor. 44, 145207 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. G.R.W. Quispel, H.W. Capel, R. Sahadevan, Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and the Painlevé reduction. Phys. Lett. A(170), 379–383 (1992)

    Google Scholar 

  25. D. Levi, L. Vinet, P. Winternitz, Lie group formalism for difference equations. J. Phys. A Math. Gen. 30(2), 633–649 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.V. Mikhailov, J.P. Wang, P. Xenitidis, Recursion operators, conservation laws, and integrability conditions for difference equations. Teore. Mat. Fiz. 1, 23–49 (2011). Transl. Theore. Math. Phys. 167, 421–443 (2011). arXiv:1004.5346

    Google Scholar 

  27. A.V. Mikhailov, J.P. Wang, P. Xenitidis, Cosymmetries and Nijenhuis recursion operators for difference equation. Nonlinearity 24, 2079–2097 (2011). arXiv:1009.2403

    Google Scholar 

  28. R.I. Yamilov, Symmetries as integrability criteria for differential difference equations. J. Phys. A Math. Gen. 39, R541–R623 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. P. Hydon. Difference Equations by Differential Equation Methods. Number 27 in Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, 2014)

    Google Scholar 

  30. O. Rasin, P. Hydon, Symmetries of integrable difference equations on the quad graph. Stud. Appl. Math. 119, 253–269 (2007)

    Article  MathSciNet  Google Scholar 

  31. P.D. Xenitidis, V.G. Papageorgiou, Symmetries and integrability of discrete equations defined on a black–white lattice. J. Phys. A Math. Theor. 42, 454025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.K. Demskoy, C.-M. Viallet, Algebraic entropy for semi-discrete equations. J. Phys. A Math. Theor. 45, 352001 (2012). arXiv:1206.1214

    Google Scholar 

  33. I.R. Shafarevich, Basic Algebraic Geometry. Number 231 in Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1977)

    Google Scholar 

  34. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable mappings and soliton equations. Phys. Lett. A 126, 419 (1988)

    Google Scholar 

  35. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable mappings and soliton equations II. Physica D34, 183–192 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  36. H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)

    Article  ADS  Google Scholar 

  37. J.J. Duistermaat, Discrete Integrable Systems: QRT Maps and Elliptic Surfaces. Springer Monographs in Mathematics (Springer, New York, 2010)

    Google Scholar 

  38. M.P. Bellon, C.-M. Viallet, Algebraic entropy. Commun. Math. Phys. 204, 425–437 (1999). arXiv:chao-dyn/9805006

    Google Scholar 

  39. B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67, 1825–1827 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Hietarinta, C.-M. Viallet, Singularity confinement and chaos in discrete systems. Phys. Rev. Lett. 81(2), 325–328 (1998). arXiv:solv-int/9711014

    Google Scholar 

  41. C.M. Viallet, On the algebraic structure of rational discrete dynamical systems. J. Phys. A Math. Theor. 48, 16FT01 (2015)

    Google Scholar 

  42. C.-M. Viallet, Algebraic Entropy for Lattice Equations. arXiv:math-ph/0609043

    Google Scholar 

  43. S. Tremblay, B. Grammaticos, A. Ramani, Integrable lattice equations and their growth properties. Phys. Lett. A 278, 319–324 (2001)

    Google Scholar 

  44. D. Levi, R. Yamilov, On a nonlinear integrable difference equation on the square 3D-inconsistent. Ufa Math. J. 1, 03 (2009). arXiv:0902.2126

    Google Scholar 

  45. S. Lobb, F. Nijhoff, Lagrangian multiforms and multidimensional consistency. J. Phys. A Math. Theor. 42(45), 454013 (2009)

    Google Scholar 

  46. Y. Suris, Variational symmetries and pluri-Lagrangian systems, in Dynamical Systems, Number Theory and Applications. A Festschrift in Honor of Armin Leutbecher’s 80th Birthday, ed. by Th. Hagen, F. Rupp, J. Scheurle. (World Scientific, 2016), pp. 255–266 arXiv:1307.2639

    Google Scholar 

  47. J. Hietarinta, C.M. Viallet, Weak Lax pairs for lattice equations. Nonlinearity 25, 1955–1966 (2012). arXiv:1105.3329

    Google Scholar 

  48. S. Butler, M. Hay. Simple Identification of Fake Lax Pairs (2013). arXiv:1311.2406

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the organisers of the 11th symposium “Théorie Quantique et Symétries” for the invitation at the Centre de Recherches Mathématiques, in particular at the occasion of the “Special Session in honour of Decio Levi: Integrability: continuous and discrete, classical & quantum.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude M. Viallet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viallet, C.M. (2021). Features of Discrete Integrability. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_2

Download citation

Publish with us

Policies and ethics