Skip to main content

The Enzymology of Non-bovine Milk

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

  • 791 Accesses

Abstract

This chapter provides an overview of knowledge in indigenous enzymes of milk from ovine, caprine, buffalo, camel, horse and donkey species. Although less widely used in the dairy sector, milk from such species has gained interest for its ability to be processed in a number of different dairy products, whether traditional or innovative, and for its biological potential in both infant and adult nutrition. In such a context, the role of indigenous enzymes is reviewed according to the most substantial and recent literature, different and advanced analytical techniques for the study of indigenous enzymes or enzyme systems are discussed. The chapter focuses on the qualitative and quantitative features of the indigenous enzymes systems in the different species, and offers a perspective on future research, especially on the behavior under the conditions and treatments applied in raw milk storage and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Hamid LB, Mahran GA, Shehata AE, Osman SG (1977) Lipase activity in buffaloes milk 2. Effect of feeding system, animal age and milking phase and meal. Egypt J Dairy Sci 5:7–10

    CAS  Google Scholar 

  • Addo CNA, Ferragut V (2015) Evaluating the ultra-high pressure homogenization (UHPH) and pasteurization effects on the quality and shelf-life of donkey milk. Int J Food Stud 4:104–115

    Article  Google Scholar 

  • Ahmad S, Anjum FM, Huma N, Sameen A, Zahoor T (2013) Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Anim Plant Sci 23:62–74

    Google Scholar 

  • Al haj OA, Al Kanhal HA (2010) Compositional, technological and nutritional aspects of dromedary camel milk. Int Dairy J 20:811–821

    Article  CAS  Google Scholar 

  • Albenzio M, Santillo A (2011) Biochemical characteristics of ewe and goat milk: effect on the quality of dairy products. Small Rumin Res 101:33–40

    Article  Google Scholar 

  • Albenzio M, Caroprese M, Santillo A, Marino R, Taibi L, Sevi A (2004a) Effects of somatic cell count and stage of lactation on the plasmin activity and cheese-making properties of ewe milk. J Dairy Sci 87:533–542

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Marino R, Caroprese M, Santillo A, Annicchiarico G, Sevi A (2004b) Quality of milk and Canestrato Pugliese cheese from ewes exposed to different ventilation regimens. J Dairy Res 7:434–443

    Article  CAS  Google Scholar 

  • Albenzio M, Caroprese M, Santillo A, Marino R, Muscio A, Sevi A (2005a) Proteolytic patterns and plasmin activity in ewes’ milk as affected by somatic cell count and stage of lactation. J Dairy Sci 72:86–92

    CAS  Google Scholar 

  • Albenzio M, Santillo A, Caroprese M, Marino R, Centoducati P, Sevi A (2005b) Effect of different ventilation regimens on ewe milk and canes-trato Pugliese cheese quality in summer. J Dairy Res 72:447–455

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Caroprese M, Marino R, Muscio A, Santillo A, Sevi A (2006) Characteristics of Garganica goat milk and Cacioricotta cheese. Small Rumin Res 64:35–44

    Article  Google Scholar 

  • Albenzio M, Santillo A, Caroprese M, Marino R, Annicchiarico G, Sevi A (2007) Effects of ventilation rate and of dietary protein level in an intensive dairy sheep system on the features of Canestrano Pugliese cheese. J Dairy Res 74:26–33

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, d’Angelo F, Sevi A (2009a) Focusing on casein gene cluster and protein profile in Garganica goat milk. J Dairy Res 76:83–89

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, Caroprese M, d’Angelo F, Marino R, Sevi A (2009b) Role of endogenous enzymes in proteolysis of sheep milk. J Dairy Sci 92:79–86

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, Caroprese M, Marino R, Trani A, Faccia M (2010) Biochemical patterns in ovine cheese: influence of probiotic strains. J Dairy Sci 93:3487–3496

    Article  PubMed  CAS  Google Scholar 

  • Albenzio M, Santillo A, Caroprese M, Ruggieri D, Ciliberti M, Sevi A (2012) Immune competence of the mammary gland as affected by somatic cell and pathogenic bacteria in ewes with subclinical mastitis. J Dairy Sci 95:3877–3887

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, Marino R, Della Malva A, Caroprese M, Sevi A (2015) Identification of peptides in functional Scamorza ovine milk cheese. J Dairy Sci 98:8428–8432

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, Avondo M, Nudda A, Chessa S, Pirisi A, Banni S (2016) Nutritional properties of small ruminant food products and their role on human health. Small Rumin Res 135:3–12

    Article  Google Scholar 

  • Ali F, Hussain R, Qayyum A, Gul ST, Iqbal Z, Hassan MF (2016) Milk somatic cell counts and some hemato-biochemical changes in sub-clinical mastitic dromedary she-camels (Camelus dromedarius). Pak Vet J 36:405–408

    CAS  Google Scholar 

  • Alichanidis E, Moatsou G, Polychroniadou Α (2016) The composition and the properties of non-cow milks and products. In: Tsakalidou E, Papadimitriou K (eds) Non-bovine milk and milk products. Academic, Cambridge, pp 81–116

    Google Scholar 

  • Al-Nazawi MH, Homeida AM (2015) Effects of antibacterial drugs on camel milk lysozyme concentration and lactoperoxidase activity. J Camel Pract Res 22:97–99

    Article  Google Scholar 

  • Altomonte I, Salari F, Licitra R, Martini M (2019) Donkey and human milk: insights into their compositional similarities. Int Dairy J 89:111–118

    Article  CAS  Google Scholar 

  • Andrews AT, Alichanidis E (1975) The acid phosphatases of bovine leucocytes, plasma and the milk of healthy and mastitic cows. J Dairy Res 42:391–400

    Article  CAS  Google Scholar 

  • Angeletti R, Gioacchini AM, Deraglia R, Piro R, Traldi P (1998) The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J Mass Spectrom 33:525–531

    Article  CAS  PubMed  Google Scholar 

  • Anifantakis EM, Rosakis PS (1983) Alkaline phosphatase activity of sheep’s milk and some factors affecting it Egypt. J Dairy Sci 11:173–182

    CAS  Google Scholar 

  • Anjos FD, Machado A, Ferro C, Otto F, Bogin E (1998) Gamma-glutamyltransferase as a marker for the pasteurisation of raw milk. J Food Prot 61:1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Arnold C (1881) Einige neue Reactionen der Milch. Arch Pharm 219:41–42

    Article  Google Scholar 

  • Assis G, Roseiro IB, Barbosa M (2000) Determination of alkaline phosphatise activity levels in milk from indigenous Portuguese ewe and goat breeds by the fluorometric method. In: Proceedings of development strategy for the sheep and goat dairy sector, international dairy federation bulletin no 351. International Dairy Federation, Brussels, p 34

    Google Scholar 

  • Atmani D, Benboubetra M, Harrison R (2004) Goat’s milk xanthine oxidoreductase is grossly deficient in molybdenum. J Dairy Res 71:7–13

    Article  CAS  PubMed  Google Scholar 

  • Atmani D, Banghiani A, Harrison R, Benboubetra M (2005) NADH oxidation and superoxide production by caprine milk oxidoreductase. Int Dairy J 15:1113–1121

    Article  CAS  Google Scholar 

  • Baer A, Ryba I, Farah Z (1994) Plasmin activity in camel milk. LWT Food Sci Technol 27:595–598

    Article  CAS  Google Scholar 

  • Baghiani A, Harrison R, Benboubetra M (2003) Purification and partial characterisation of camel milk xanthine oxidoreductase. Arch Physiol Biochem 111:407–414

    Article  CAS  PubMed  Google Scholar 

  • Barbosa M (2005) Interest in controlling alkaline phosphatase activity in sheep and goat milks. The future of the sheep, goat dairy sectors (part 3, special issue 0501). IDF-FIL, Brussels, pp 117–127

    Google Scholar 

  • Benboubetra M, Baghiani A, Atmani D, Harrison R (2004) Physicochemical and kinetic properties of purified sheep’s milk xanthine oxidoreductase. J Dairy Sci 87:1580–1584

    Article  CAS  PubMed  Google Scholar 

  • Bencini R, Pulina G (1997) The quality of sheep milk: a review. Aust J Exp Agric 37:485–504

    Article  Google Scholar 

  • Benkerroum N (2008) Antimicrobial activity of lysozyme with special relevance to milk. Afr J Biotechnol 7:4856–4867

    CAS  Google Scholar 

  • Bianchi L, Bolla A, Budelli E, Caroli A, Casoli C, Pauselli M, Duranti E (2004) Effect of udder health status and lactation phase on the characteristics of Sardinian ewe milk. J Dairy Sci 87:2401–2408

    Article  CAS  PubMed  Google Scholar 

  • Bingham EW, Garrer K, Powlem D (1992) Purification and properties of alkaline phosphatase in the lactating mammary gland. J Dairy Sci 75:3394–3401

    Article  CAS  PubMed  Google Scholar 

  • Brumini D, Criscione A, Bordonaro S, Vegarud GE, Marletta D (2016) Whey proteins and their antimicrobial properties in donkey milk: a brief review. Dairy Sci Technol 96:1–14

    Article  CAS  Google Scholar 

  • Caroprese M, Marzano A, Schena L, Marino R, Santillo A, Albenzio M (2007) Contribution of macro phages to proteolysis and plasmin activity in ewe bulk milk. J Dairy Sci 90:2767–2772

    Article  CAS  PubMed  Google Scholar 

  • Cartier P, Chillard Y, Paquet D (1990) Inhibiting and activating effects of skim milks and proteose-peptone fractions on spontaneous lipolysis and purified lipoprotein lipase activity in bovine milk. J Dairy Sci 73:1173–1177

    Article  CAS  Google Scholar 

  • Cebo C, Caillat H, Bouvier F, Martin P (2010) Major proteins of the goat milk fat globule membrane. J Dairy Sci 93:868–876

    Article  CAS  PubMed  Google Scholar 

  • Cebo C, Rebours E, Henry C, Makhzami S, Cosette P, Martin P (2012) Identification of major milk fat globule membrane proteins from pony mare milk highlights the molecular diversity of lactadherin across species. J Dairy Sci 95:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Chandan RC, Parry RM, Shahani KM (1968) Lysozyme, lipase and ribonuclease in milk of various species. J Dairy Sci 51:606–607

    Article  CAS  Google Scholar 

  • Chavarri F, Santistebam A, Virto M, de Renobales M (1998) Alkaline phosphatase, acid phosphatase, lactoperoxidase, and lipoprotein lipase activities in industrial ewes’ milk and cheese. J Agric Food Chem 46:2926–2932

    Article  CAS  Google Scholar 

  • Chiavari C, Coloretti F, Nanni M, Sorrentino E, Grazia L (2005) Use of donkey’s milk for a fermented beverage with lactobacilli. Lait 85:481–490

    Article  Google Scholar 

  • Chilliard Y (1982) Variations physiologiques desactivite ́slipasiques et de la lipolyse spontane ́e dans les laits de vache de chevre et de femme: revue bibliographique (suite). Lait 62:126–154

    Article  CAS  Google Scholar 

  • Chilliard Y, Doreau M (1985) Characterization of lipase in mare milk. J Dairy Sci 68:37–39

    Article  CAS  Google Scholar 

  • Chilliard Y, Ferlay A, Rouel J, Lamberet G (2003) A review of nutritional and physiological factors affecting goat milk synthesis and lypolysis. J Dairy Sci 86:1751–1770

    Article  CAS  PubMed  Google Scholar 

  • Civardi G, Curadi MC, Orlandi M, Cattaneo TMP, Giangiacomo R (2007) Mare’s milk: monitoring the effect of thermal treatments on whey proteins stability by SDS-capillary electrophoresis (CE-SDS). Milchwissenschaft 62:32–35

    CAS  Google Scholar 

  • Coburn SP, Mahuren JD, Pauly TA, Ericson KL, Townsend DW (1992) Alkaline phosphatase activity and pyridoxal phosphate concentrations in the milk of various species. J Nutr 122:2348–2353

    Article  CAS  PubMed  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  CAS  Google Scholar 

  • Coppola R, Salimei E, Succi M, Sorrentino E, Nanni M, Ranieri P, Belli Blanes R, Grazia L (2002) Behaviour of Lactobacillus rhamnosus strains in ass’s milk. Ann Microbiol 52:55–60

    Google Scholar 

  • Cosentino C, Paolino R, Valentini V, Musto M, Ricciardi A, Adduci F, D’Adamo C, Pecora G, Freschi P (2015) Effect of jenny milk addition on the inhibition of late blowing in semihard cheese. J Dairy Sci 98:5133–5142

    Article  CAS  PubMed  Google Scholar 

  • Cosentino C, Labella C, Elshafie HS, Camele I, Musto M, Paolino R, D’Adamo C, Freschi P (2016) Effects of different heat treatments on lysozyme quantity and antimicrobial activity of jenny milk. J Dairy Sci 99:5173–5179

    Article  CAS  PubMed  Google Scholar 

  • Delacroix-Buchet A, Degas C, Lamembert G, Vassal L (1996) Influence des variants AA et FF de la case ́ine as1 caprine sur le rendement fromager et les characte ́ristiques des fromages. Lait 76:217–241

    Article  CAS  Google Scholar 

  • Di Luccia A, Picariello G, Trani A, Alviti G, Loizzo P, Faccia M, Addeo F (2009) Occurrence of β-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk. J Dairy Sci 92:1319–1329

    Article  PubMed  CAS  Google Scholar 

  • Doreau M, Martin-Rosset W (2011) Animals that produce dairy foods. Horse. In: Fuquay JW (ed) Encyclopaedia of dairy sciences. Elsevier, London, pp 358–364

    Chapter  Google Scholar 

  • Duhaiman AS (1988) Purification of camel milk lysozyme and its lytic effect on Escherichia coli and Micrococcus Iysodeikticus. Comp Biochem Physiol 91B:793–796

    CAS  Google Scholar 

  • Dumitraşcu L, Stănciuc N, Stanciu S, Râpeanu G (2012) Thermal inactivation of lactoperoxidase in goat, sheep and bovine milk – a comparative kinetic and thermodynamic study. J Food Eng 113:47–52

    Article  CAS  Google Scholar 

  • Egito AS, Miclo L, Lopez C, Adam A, Girardet J-M, Gaillard J-L (2002) Separation and characterisation of mares’ milk as1-, b-, k-caseins, g-casein-like, and proteose peptone component 5-like peptides. J Dairy Sci 85:697–706

    Article  CAS  PubMed  Google Scholar 

  • Egito AS, Girardet J-M, Poirson C, Mollé D, Humbert G, Miclo L, Gaillard J-L (2003) Action of plasmin on equine β-casein. Int Dairy J 13:813–820

    Article  CAS  Google Scholar 

  • El-Agamy EI (2017) Camel milk. In: Park YW, Haenlein GF, Wendorff WL (eds) Handbook of milk of non-bovine mammals. Wiley, Oxford, pp 409–480

    Chapter  Google Scholar 

  • Elagamy E, Ruppanner R, Ismail A, Champagne C, Assaf R (1992) Antibacterial and antiviral activity of camel milk protective proteins. J Dairy Res 59:169–175

    Article  CAS  Google Scholar 

  • Elagamy EI, Ruppanner R, Ismail A, Champagne CP, Assaf R (1996) Purification and characterization of lactoferrin, lactoperoxidase, lysozyme and immunoglobulins from camel’s milk. Int Dairy J 6:129–145

    Article  CAS  Google Scholar 

  • El-Fakharany EM, Uversky VN, Redwan EM (2017) Comparative analysis of the antiviral activity of camel, bovine, and human lactoperoxidases against herpes simplex virus type 1. Appl Biochem Biotechnol 182:294–310

    Article  CAS  PubMed  Google Scholar 

  • El-Gazzar H, Rafaie MOI, El-Aziz MA (1999) Activity of xanthine oxidase in milk and its products and effect of heat and folic acid upon its activity. Ann Agric Sci Ain Shams Univ Cairo 44:631–639

    Google Scholar 

  • El-Salam MA, El-Shibiny S (2011) A comprehensive review on the composition and properties of buffalo milk. Dairy Sci Technol 91:663–699

    Article  CAS  Google Scholar 

  • Fantuz F, Baldi A, Dellorto V, Polidori F, Rossi CS, Pollitis I, Heegaard CW (1998) Distribution of plasminogen activator forms in different fractions of buffalo milk. J Dairy Res 65:521–527

    Article  CAS  PubMed  Google Scholar 

  • Farkye NY (2003) Other enzymes. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry. Elsevier Applied Science, London, pp 571–603

    Google Scholar 

  • Felfoul I, Jardin J, Gaucheron F, Attia H, Ayadi MA (2017) Proteomic profiling of camel and cow milk proteins under heat treatment. Food Chem 216:161–169

    Article  CAS  PubMed  Google Scholar 

  • Fox PF (2003) Significance of indigenous enzymes in milk and dairy products. In: Whitaker JR, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York, pp 255–277

    Google Scholar 

  • Fox PF, Kelly AL (2006) Review indigenous enzymes in milk: overview and historical aspects-part 2. Int Dairy J 16:517–532

    Article  CAS  Google Scholar 

  • Giacometti F, Bardasi L, Merialdi G, Morbarigazzi M, Federici S, Piva S, Serraino A (2016) Shelf life of donkey milk subjected to different treatment and storage conditions. J Dairy Sci 99:4291–4299

    Article  CAS  PubMed  Google Scholar 

  • Giribaldi M, Antoniazzi S, Gariglio GM, Coscia A, Bertino E, Cavallarin L (2017) A preliminary assessment of HTST processing on donkey milk. Vet Sci 4:50

    Article  PubMed Central  Google Scholar 

  • Gobbetti M, Morea M, Baruzzi F, Corbo MR, Matarante A, Considine T, Di Cagno R, Guinee T, Fox PF (2002) Microbiological, compositional, biochemical and textural characterisation of Caciocavallo Pugliese cheese during ripening. Int Dairy J 12:511–523

    Article  CAS  Google Scholar 

  • Gómez-Ruiz JA, Ramos M, Recio I (2004) Identification and formation of angiotensin-converting enzymes-inhibitory peptides in Manchego cheese by high-performance liquid chromatography-tandem mass spectrometry. J Chromotogr A 1054:269–277

    Article  CAS  Google Scholar 

  • Griffiths MW (1986) Use of milk enzymes as indices of heat treatment. J Food Prot 49:696–705

    Article  CAS  PubMed  Google Scholar 

  • Hailu Y, Hansen EB, Seifu E, Eshetu M, Ipsen R, Kappeler S (2016) Functional and technological properties of camel milk proteins: a review. J Dairy Res 83:422–429

    Article  CAS  PubMed  Google Scholar 

  • Hamulv G, Kandasamy C (1982) Increasing the keeping quality of milk by activation of its lactoperoxidase system: results from Sri Lanka. Milchwissenschaft 37:454–457

    Google Scholar 

  • Harding F, Garry E (2005) Collaborative evaluation of a fluorometric method for measuring alkaline phosphatase activity in cow’s, sheep’s, and goat’s milk. J Food Prot 68:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Herrouin M, Mollé D, Fauquant J, Ballestra F, Maubois JL, Léonil J (2000) New genetic variants identified in donkey’s milk whey proteins. J Protein Chem 19:105–115

    Article  CAS  PubMed  Google Scholar 

  • Hofi AA, Mahran GA, Abd El-Hamid LB, Osman SG (1976) Lipase activity in buffalo’s milk. 1. Effect of lactation period and individuality. Egypt J Dairy Sci 4:111–114

    CAS  Google Scholar 

  • Humbert G, Chang O, Gaillard JL (2005) Plasmin activity and plasminogen activation in equine milk. Milchwissenschaft 60:134–137

    CAS  Google Scholar 

  • Inglingstad RA, Devold TG, Eriksen EK, Holm H, Jacobsen M, Liland KH, Rucke OE, Vegarud GE (2010) Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci Technol 90:549–563

    Article  CAS  Google Scholar 

  • Irigoyen A, Izco JM, Ibánez FC, Torre P (2000) Evaluation of the effect of rennet type on casein proteolysis in an ovine milk cheese by means of capillary electrophoresis. J Chromatogr A 881:59–67

    Article  CAS  PubMed  Google Scholar 

  • Jaeggi JJ, Govindasamy-Lucey S, Berger YM, Johnson ME, McKusick BC, Thomas DL, Wendorff WL (2003) Hard ewes milk cheese manufactured from milk of three different groups of somatic cell count. J Dairy Sci 86:3082–3089

    Article  CAS  PubMed  Google Scholar 

  • Jaubert G, Bodin JP, Jaubert A (1996) Flavour of goat farm bulk milk. In: Proceedings of the sixth international conference on goats, vol 1. International Academic Publishers, Beijing, pp 66–69

    Google Scholar 

  • Jauregui-Adell J (1975) Heat stability and reactivation of mare milk lysozyme. J Dairy Sci 58:835–838

    Article  CAS  PubMed  Google Scholar 

  • Kumari V, Mathur MP (1981) Buffalo milk lysozyme. Indian J Dairy Sci 34:385–390

    Google Scholar 

  • Kaartinen L, Jensen NE (1988) Use of N-acetyl-beta-glu-cosaminidase to detect teat can inflammations. J Dairy Sci 55:603–607

    CAS  Google Scholar 

  • Kamau PNM, Wangoh J (2010) Use of the lactoperoxidase system to enhance keeping quality of pasteurised camel milk. FoodReview 4:61–63

    Google Scholar 

  • Kamau PNM, Lamuka P, Wangoh J (2010) Effect of lactoperoxidase-thiocyanate-hydrogen peroxide system and storage temperature on keeping quality of raw camel milk. Afr J Food Agric Nutr Dev 10:4186–4201

    Google Scholar 

  • Kappeler S (1998) Compositional and structural analysis of camel milk proteins with emphasis on protective proteins. Zurich. Dissertation for the degree of Doctor of Technical Sciences, Swiss Federal Institute of Technology. Diss. ETH No. 12947

    Google Scholar 

  • Kelly AL, McSweeney PLH (2002) Indigenous proteinases in milk. Adv Dairy Chem 1:494–519

    Google Scholar 

  • Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi AA (2017) Biomolecular content of camel milk: a traditional superfood towards future healthcare industry. Trends Food Sci Technol 62:49–58

    Article  CAS  Google Scholar 

  • Kitchen BJ, Taylor GC, White IC (1970) Milk enzymes – their distribution and activity. J Dairy Res 37:279–288

    Article  CAS  Google Scholar 

  • Klotz V, Hill A, Warriner K, Griffiths M, Odumeru J (2008) Assessment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow’s, goat’s, and sheep’s milk. J Food Prot 71:1884–1888

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Chaffer M, Shamay A, Shapiro F, Merin U, Erza E, Saran A, Silanikove N (2004a) Changes in milk composition as affected by subclinical mastitis in sheep. J Dairy Sci 87:46–52

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Merin U, Silanikove N (2004b) Changes in milk composition as affected by subclinical mastitis in goats. J Dairy Sci 87:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Liu DK, Williams GH (1982) Species differences in ribonuclease activity of milk and mammary gland. Comp Biochem Physiol Part B Comp Biochem 71:535–538

    Article  CAS  Google Scholar 

  • Lodi R, Todesco R, Carini S (1984) Preliminary study on the use of lysozyme in provolone cheese production. Ind Latte 20:37–50

    CAS  Google Scholar 

  • Lombardi P, Avallone L, D’Angelo A, Mor T, Bogin E (2000) Buffalo-milk enzyme levels, their sensitivity to heat inactivation, and their possible use as markers for pasteurization. J Food Prot 63:970–973

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen PC, Martin D, Clawin-Rädecker I, Barth K, Knappstein K (2010) Activities of alkaline phosphatase, glutamyltransferase and lactoperoxidase in cow, sheep and goat’s milk in relation to heat treatment. Small Rumin Res 89:18–23

    Article  Google Scholar 

  • Lorenzen PC, Wernery R, Johnson B, Jose S, Wernery U (2011) Evaluation of indigenous enzyme activities in raw and pasteurised camel milk. Small Rumin Res 97:79–82

    Article  Google Scholar 

  • Madkor SA, Fox PF (1991) Plasmin activity in buffalo milk. Food Chem 39:139–156

    Article  CAS  Google Scholar 

  • Mahdi L, Mahdi N, Al-kakei S, Musafer H, Al-Joofy I, Essa R, Zwain L, Salman I, Mater H, Al-Alak S, Al-Oqaili R (2018) Treatment strategy by lactoperoxidase and lactoferrin combination: Immunomodulatory and antibacterial activity against multidrug-resistant Acinetobacter baumannii. Microb Pathog 114:147–152

    Article  CAS  PubMed  Google Scholar 

  • Maqsood S, Al-Dowaila A, Mudgil P, Kamal H, Jobe B, Hassan HM (2019) Comparative characterization of protein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion. Food Chem 279:328–338

    Article  CAS  PubMed  Google Scholar 

  • Marchand S, Merchiers M, Messens W, Coudijzer K, De Block J (2009) Thermal inactivation kinetics of alkaline phosphatase in equine milk. Int Dairy J 19:763–767

    Article  CAS  Google Scholar 

  • Markiewicz-Kęszycka M, Wójtowski J, Kuczyńska B, Puppel K, Czyżak-Runowska G, Bagnicka E, Strzałkowska N, Jóźwik A, Krzyżewski J (2013) Chemical composition and whey protein fraction of late lactation mares’ milk. Int Dairy J 31:62–64

    Article  CAS  Google Scholar 

  • Martini M, Altomonte I, Pesi R, Tozzi MG, Salari F (2013) Fat globule membranes in ewes’ milk: the main enzyme activities during lactation. Int Dairy J 28:36–39

    Article  CAS  Google Scholar 

  • Martini M, Salari F, Altomonte I, Ragona G, Piazza A, Gori R, Casati D, Brajon G (2018) Effects of pasteurization and storage conditions on donkey milk nutritional and hygienic characteristics. J Dairy Res 85:445–448

    Article  CAS  PubMed  Google Scholar 

  • Massouras T, Triantaphyllopoulos KA, Theodossiou I (2017) Chemical composition, protein fraction and fatty acid profile of donkey milk during lactation. Int Dairy J 75:83–90

    Article  CAS  Google Scholar 

  • McKellar RC, Emmons DB, Farber J (1991) Gamma-glutamyl transpep-tidase in milk and butter as indicator of heat treatment. Int Dairy J 1:241–251

    Article  CAS  Google Scholar 

  • Medina M, Gaya P, Nunez M (1989) The lactoperoxidase system in ewe’s milk: levels of lactoperoxidase and thiocyanate. Lett Appl Microbiol 8:147–149

    Article  CAS  Google Scholar 

  • Merin U, Rosental I, Maltz E (1988) The composition of goat milk as affected by nutritional parameters. Milchwissenschaft 43:363–365

    CAS  Google Scholar 

  • Moatsou G (2010) Indigenous enzymatic activities in ovine and caprine milks. Int J Dairy Technol 63:16–31

    Article  CAS  Google Scholar 

  • Moatsou G, Katsaros G, Bakopanos C, Kandarakis I, Taoukis P, Politis I (2008) Effects of high-pressure treatment at various temperatures on activity of indigenous proteolytic enzymes and denaturation of whey proteins in ovine milk. Int Dairy J 18:1119–1125

    Article  CAS  Google Scholar 

  • Morgan F, Gaspard CE (1999) Influence des cellules somatiques sur les qualities technologiques du lait de chèvre et sur les caractéristiques des fromages de chèvre (Influence of somatic cells on technological properties of goat milk and on characteristics of goat cheese). Renc Rech Rumin 6:317

    Google Scholar 

  • Morozova-Roche L (2007) Equine lysozyme: the molecular basis of folding, self-assembly and innate amyloid toxicity. FEBS Lett 581:2587–2592

    Article  CAS  PubMed  Google Scholar 

  • Murgia A, Scano P, Contu M, Ibba I, Altea M, Bussu M, Demuru M, Porcu A, Caboni P (2016) Characterization of donkey milk and metabolite profile comparison with human milk and formula milk. LWT Food Sci Technol 74:427–433

    Article  CAS  Google Scholar 

  • Manjunath GM, Bhat GS (1992) Effect of processing on native proteinases in milk. J Food Sci Technol 29:195–196

    Google Scholar 

  • Nájera AI, Barron LJR, Barcina Y (1994) Changes in free fatty acids during the ripening of Idiazabal cheese: influence of brining time and smoking. J Dairy Res 61:281–288

    Article  Google Scholar 

  • Nega A, Moatsou G (2012) Proteolysis and related enzymatic activities in ten Greek cheese varieties. Dairy Sci Technol 92:57–73

    Article  CAS  Google Scholar 

  • Niro S, Fratianni A, Colavita G, Galassi L, Zanazzi M, Salimei E (2017) Technological use of donkey milk in cheesemaking. Int J Dairy Technol 70:439–442

    Article  CAS  Google Scholar 

  • Ozturkoglu-Budak S (2018) Effect of different treatments on the stability of lysozyme, lactoferrin and-lactoglobulin in donkey’s milk. Int J Dairy Technol 71:36–45

    Article  CAS  Google Scholar 

  • Pellegrini O, Remeuf F, Rivemale M, Barillet F (1997) Renneting properties of milk from individual ewes: influence of genetic and non-genetic variables, and relationship with physicochemical characteristics. J Dairy Res 64:355–366

    Article  CAS  Google Scholar 

  • Piga C, Urgeghe PP, Piredda G, Scintu M, Sanna G (2009) Asssessment and validation of methods for the determination of glutamyltransferase activity in sheep milk. Food Chem 115:1519–1523

    Article  CAS  Google Scholar 

  • Pilla R, Daprà V, Zecconi A, Piccinini R (2010) Hygienic and health characteristics of donkey milk during a follow-up study. J Dairy Res 77:392–397

    Article  CAS  PubMed  Google Scholar 

  • Pinho O, Mendes E, Alves MM, Ferreira IM (2004) Chemical, physical, and sensorial characteristics of “Terrincho” ewe cheese: changes during ripening and intravarietal comparison. J Dairy Sci 87:249–257

    Article  CAS  PubMed  Google Scholar 

  • Pirisi A, Piredda G, Podda F, Pintus S (1996) Effect of somatic cell count on sheep milk composition and cheesemaking properties. In: Somatic cells and Milk of small ruminants. EAAP publication no. 77. Wageningen Press, Wageningen, pp 245–251

    Google Scholar 

  • Pirisi A, Piredda G, Corona M, Pes M, Pintus S, Ledda A (2000) Influence of somatic cell count on ewe’s milk composition, cheese yield and cheese quality. In: 6th proceedings of Great Lakes dairy sheep symposium, Guelph, Canada. Ontario Dairy Sheep Association, Shelburne, ON, pp 47–59

    Google Scholar 

  • Polidori P, Vincenzetti S (2010) Differences of protein fractions among fresh, frozen and powdered donkey milk. Recent Pat Food Nutr Agric 2:56–60

    Article  CAS  PubMed  Google Scholar 

  • Politis I, Lachance E, Block E, Turner JD (1989) Plasmin and plasminogen in bovine milk: a relationship with involution. J Dairy Sci 72:900–906

    Article  CAS  PubMed  Google Scholar 

  • Politis I, Zhao X, McBraid BW, Burton JH, Turner JD (1991) Plasminogen activator production by bovine milk macrophages and blood monocytes. Am J Vet Res 52:1208–1213

    CAS  PubMed  Google Scholar 

  • Priyadarshini S, Kansal VK (2002a) Lysozyme activity in buffalo milk: effect of lactation period, parity, mastitis, season in India, pH and milk processing heat treatment. Asian-Aust J Animal Sci 15:895–899

    Article  CAS  Google Scholar 

  • Priyadarshini S, Kansal VK (2002b) Purification, characterization, antibacterial activity and Nterminal sequencing of buffalo-milk lysozyme. J Dairy Res 69:419–431

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini S, Kansal VK (2003) Biochemical characterization of buffalo (Bubalusbubalis)milk lysozyme. J Dairy Res 70:467–472

    Article  CAS  PubMed  Google Scholar 

  • Ragona G, Corrias F, Benedetti M, Paladini I, Salari F, Altomonte I, Martini M (2016) Amiata donkey milk chain: animal health evaluation and milk quality. Italian J Food Saf 5:173–178

    Google Scholar 

  • Raynal-Ljutovac K, Park YW, Gaucheron F, Bouhallab S (2007) Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin Res 68:207–220

    Article  Google Scholar 

  • Rebucci R, Fusi E, Pecorini L, Pinotti L, Cheli F, Baldi A (2005) Evaluation of the biological activation of plasmin plasminogen system in sheep and goat milk. Italian J Anim Sci 4:330–332

    Article  Google Scholar 

  • Redwan EM, Almehdar HA, El-Fakharany EM, Baig A-WK, Uversky VN (2015) Potential antiviral activities of camel, bovine, and human lactoperoxidases against hepatitis C virus genotype 4. RSC Adv 5:60441–60452

    Article  CAS  Google Scholar 

  • Revilla I, Rodríguez-Nogales GM, Vivar-Quintana AM (2007) Proteolysis and texture of hard ewe’s milk cheese during ripening as affected by somatic cell count. J Dairy Res 74:127–136

    Article  CAS  PubMed  Google Scholar 

  • Roseiro de Bivar ML, Barbosa M (1995) Phosphatase activity levels in pasteurized goat’s milk. J Soc Dairy Technol 48:9–12

    Article  Google Scholar 

  • Ryskaliyeva A, Henry C, Miranda G, Faye B, Konuspayeva G, Martin P (2018) Combining different proteomic approaches to resolve complexity of the milk protein fraction of dromedary, Bactrian camels and hybrids, from different regions of Kazakhstan. PLoS One 13(5):e0197026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saadaoui B, Henry C, Khorchani T, Mars M, Martin P, Cebo C (2013) Proteomics of the milk fat globule membrane from Camelus dromedarius. Proteomics 13:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Saeman AI, Verdi RJ, Galton DM, Barbano DM (1988) Effect of mastitis on proteolytic activity in bovine milk. J Dairy Sci 71:505–512

    Article  CAS  PubMed  Google Scholar 

  • Salimei E, Fantuz F (2012) Equid milk for human consumption. Int Dairy J 24:130–142

    Article  CAS  Google Scholar 

  • Salimei E, Fantuz F (2013) Horse and donkey milk. In: Park YW, Haenlein GFW (eds) Milk and dairy products in human nutrition. Wiley-Blackwell, Oxford, pp 594–612

    Chapter  Google Scholar 

  • Sanhotra M, Dutta SM (1986) Effect of cold storage, heating and homogenization on xanthine oxidase activity in buffalo milk. Indian J Dairy Sci 39:423–425

    CAS  Google Scholar 

  • Santillo A, Albenzio M (2008) Influence of lamb rennet paste containing probiotic on proteolysis and rheological properties of pecorino cheese. J Dairy Sci 91:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Santillo A, Kelly AL, Palermo C, Sevi A, Albenzio M (2009) Role of indigenous enzymes in proteolysis of casein in caprine milk. Int Dairy J 19:655–660

    Article  CAS  Google Scholar 

  • Santillo A, Ruggieri D, Albenzio M (2011) Caratterizzazione chimica, enzimatica, e microbiologica del latte e della mozzarella di bufalo prodotti in provincia di Foggia. Sci Tec Latt Casearia 62:377–386

    CAS  Google Scholar 

  • Šarić LC, Šarić BM, Mandić AI, Kevrešan ZS, Ikonić BB, Kravić SZ, Jambrec DJ (2014) Role of calcium content in antibacterial activity of donkeys’ milk toward E. coli. Eur Food Res Technol 239:1031–1039

    Article  CAS  Google Scholar 

  • Seifu E, Buys EM, Donkin EF (2005) Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends Food Sci Technol 16:137–154

    Article  CAS  Google Scholar 

  • Shakeel-Ur-Rehman, Fleming CM, Farkye NY, Fox PF (2003) Indigenous phosphatases in milk. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry. Elsevier Applied Science, London, pp 523–543

    Google Scholar 

  • Sharma R, Kaur S, Rajput YS, Kumar R (2009) Activity and thermal stability of indigenous enzymes in cow, buffalo and goat milk. Milchwissenschaft 64:173–175

    CAS  Google Scholar 

  • Sheikh IA, Jiffri EH, Ashraf GM, Kamal MA, Beg MA (2018) Structural studies on inhibitory mechanisms of antibiotic, corticosteroid and catecholamine molecules on lactoperoxidase. Life Sci 207:412–419

    Article  CAS  PubMed  Google Scholar 

  • Sheikh IA, Jiffri EH, Ashraf GM, Kamal MA (2019) Structural insights into the camel milk lactoperoxidase: homology modeling and molecular dynamics simulation studies. J Mol Graph Model 86:43–51

    Article  CAS  PubMed  Google Scholar 

  • Shori AB (2015) Camel milk as a potential therapy for controlling diabetes and its complications: a review of in vivo studies. J Food Drug Anal 23:609–618

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Mal G, Kumar D, Patil NV, Pathak KML (2017) Camel milk: An important natural adjuvant. Agric Res 6:327–340

    Article  CAS  Google Scholar 

  • Souroullas K, Aspri M, Papademas P (2018) Donkey milk as a supplement in infant formula: benefits and technological challenges. Food Res Int 109:416–425

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Mathur MP, Mudgel VD (1989) Influence of feeding protected fat to buffaloes on some enzymes in milk. Indian J Dairy Sci 42:354–355

    CAS  Google Scholar 

  • Sutherland BJ (2003) Salting of cheese. In: Roginski H, Fuquay JW, Fox PF (eds) Encyclopedia of dairy sciences. MPG Books, Bodmin

    Google Scholar 

  • Salimei E, Park YW (2017) Mare milk. In: Park YW, Haenlein GFW, Wendorff WL (eds) Handbook of Milk of Non-Bovine Mammals: Second Edition. John Wiley & Sons Ltd, Oxford, pp 369-408

    Google Scholar 

  • Tayefi-Nasrabadi H, Asdpour R (2008) Effect of heat treatment on buffalo (Bubalus bubalis) lactoperoxidase activity in raw milk. J Biol Sci 8:1310–1315

    Article  Google Scholar 

  • Tayefi-Nasrabadi H, Hoseinpour-fayzi MA, Mohasseli M (2011) Effect of heat treatment on lactoperoxidase activity in camel milk: a comparison with bovine lactoperoxidase. Small Rumin Res 99:187–190

    Article  Google Scholar 

  • Theodorou G, Kominakis A, Rogdakis E, Politis I (2007) Factors affecting the plasmin-plasminogen system in milk obtained from three Greek dairy sheep breeds with major differences in milk production capacity. J Dairy Sci 90:3263–3269

    Article  CAS  PubMed  Google Scholar 

  • Tidona F, Sekse C, Criscione A, Jacobsen M, Bordonaro S, Marletta D, Vegarud GE (2011) Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes. Int Dairy J 21:158–165

    Article  CAS  Google Scholar 

  • Tidona F, Criscione A, Devold TG, Bordonaro S, Marletta D, Vegarud GE (2014) Protein composition and micelle size of donkey milk with different protein patterns: effects on digestibility. Int Dairy J 35:57–62

    Article  CAS  Google Scholar 

  • Trieu-Cuot P, Addeo F (1981) Occurrence of gamma casein in buffalo milk. J Dairy Res 48:311–317

    Article  Google Scholar 

  • Uniacke-Lowe T, Huppertz T, Fox PF (2010) Equine milk proteins: chemistry, structure and nutritional significance. Int Dairy J 20:609–629

    Article  CAS  Google Scholar 

  • Vamvakaki AN, Zoidou E, Moatsou G, Bokari M, Anifantakis E (2006) Residual alkaline phosphatase activity after heat treatment of ovine and caprine milk. Small Rumin Res 65:237–241

    Article  Google Scholar 

  • Vincenzetti S, Polidori P, Mariani P, Cammertoni N, Fantuz F, Vita A (2008) Donkey’s milk protein fractions characterization. Food Chem 106:640–649

    Article  CAS  Google Scholar 

  • Vincenzetti S, Pucciarelli S, Polzonetti V, Polidori P (2017) Role of proteins and of some bioactive peptides on the nutritional quality of donkey milk and their impact on human health. Beverages 3:34

    Article  CAS  Google Scholar 

  • Vincenzetti S, Cecchi T, Perinelli DR, Pucciarelli S, Polzonetti V, Bonacucina G, Ariani A, Parrocchia L, Spera DM, Ferretti E, Vallesi P, Polidori P (2018) Effects of freeze-drying and spray-drying on donkey milk volatile compounds and whey proteins stability. LWT Food Sci Technol 88:189–195

    Article  CAS  Google Scholar 

  • Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavour: an overview symposium: proteolytic enzymes and cheese ripening. J Dairy Sci 76:329–350

    Article  CAS  Google Scholar 

  • Wernery U, Maier U, Johnson B, George RM, Braun F (2006) Comparative study on different enzymes evaluating heat treatment of dromedary milk. Milchwissenschaft 61:281–285

    CAS  Google Scholar 

  • Wernery U, Fischbach S, Johnson B, Jose S (2008) Evaluation of alkaline phosphatase (ALP), γ-glutamyl transferase (GGT) and lactoperoxidase (LPO) activities for their suitability as markers of camel milk heat inactivation. Milchwissenschaft 63:265–267

    CAS  Google Scholar 

  • Wernery U, Wernery R, Masko O, Johnson B, Gnanaraj B, Jose S, Nagy P, Lorenzen PC (2013) Lactoperoxidase: a suitable enzymatic marker of camel milk pasteurization. J Camel Pract Res 20:35–38

    Google Scholar 

  • Wilińska A, Bryjak J, Illeová V, Polakovič M (2007) Kinetics of thermal inactivation of alkaline phosphatase in bovine and caprine milk and buffer. Int Dairy J 17:579–586

    Article  CAS  Google Scholar 

  • Ying C, Wang HT, Hsu JT (2002) Relationships of somatic cell count, physical, chemical and enzymatic properties to the bacterial standard plate count in dairy goat milk. Livestock Prod Sci 74:63–77

    Article  Google Scholar 

  • Yoganandi J, Jain AK, Mehta BM, Wadhwani KN, Aparnathi KD (2014) Comparative studies on selected enzymes activities of camel, cow and buffalo milk. J Camel Pract Res 21:249–252

    Article  Google Scholar 

  • Younan M, Farah Z, Galett V (2006) Application of the activated lactoperoxidase-thiocyanate-hydrogen peroxide system to improve the storage of raw camel milk. Milchwissenschaft 61:391–394

    CAS  Google Scholar 

  • Zamora A, Guamis B, Trujillo AJ (2009) Protein composition of caprine milk fat globule membrane. Small Rumin Res 82:122–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Albenzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albenzio, M., Santillo, A., Moatsou, G. (2021). The Enzymology of Non-bovine Milk. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_8

Download citation

Publish with us

Policies and ethics