Skip to main content

The Production of Bioactive Peptides from Milk Proteins

  • Chapter
  • First Online:
Agents of Change

Abstract

Peptides derived from milk proteins are associated with a range of different bioactivities, e.g., antioxidant, antihypertensive, antidiabetic, immunomodulatory, antimicrobial, opioid properties. Peptides can be released following in vitro enzymatic hydrolysis, fermentation and in vivo digestion approaches, alone or in combination. The release of bioactive peptides (BAPs) from milk proteins by these processes is reviewed herein. Furthermore, the contribution of in silico approaches in the targeted release and identification of BAPs is outlined. Details of bioactive milk protein derived peptide sequences obtained by enzymatic hydrolysis, fermentation, and in vivo digestion, as well as by using in silico approaches are presented. Examples of the application of membrane processing and chromatographic techniques for milk BAP fractionation and enrichment are described. Research on the production and identification of milk-derived BAPs can contribute to a better understanding of the nutritional benefits of dairy product consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Salam MH, El-Shibiny S (2017). Separation of Bioactive Whey Proteins and Peptides. In Ingredients extraction by physicochemical methods in food (pp. 463ā€“494). Academic Press

    Google ScholarĀ 

  • Abdel-Hamid M, Romeih E, Gamba RR, Nagai E, Suzuki T, Koyanagi T, Enomoto T (2019) The biological activity of fermented milk produced by lactobacillus casei ATCC 393 during cold storage. Int Dairy J 91:1ā€“8

    Google ScholarĀ 

  • Adams RL, Broughton KS (2016) Insulinotropic effects of whey: mechanisms of action, recent clinical trials, and clinical applications. Ann Nutr Metab 69(1):56ā€“63

    Google ScholarĀ 

  • Adje EY, Balti R, Kouach M, Guillochon D, Nedjar-Arroume N (2011) Ī± 67-106 of bovine hemoglobin: a new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. Eur Food Res Technol 232(4):637ā€“646

    Google ScholarĀ 

  • Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK (2016) Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process 98:244ā€“256

    Google ScholarĀ 

  • Ahn C-B, Je J-Y (2019) Bone health-promoting bioactive peptides. J Food Biochem 43(1):e12529

    Google ScholarĀ 

  • Akhavan T, Luhovyy BL, Brown PH, Cho CE, Anderson GH (2010) Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr 91(4):966ā€“975

    Google ScholarĀ 

  • Altmann K, Wutkowski A, Klempt M, Clawin-RƤdecker I, Meisel H, Lorenzen PC (2016) Generation and identification of anti-inflammatory peptides from bovine Ī²-casein using enzyme preparations from cod and hog. J Sci Food Agric 96(3):868ā€“877

    Google ScholarĀ 

  • Aluko RE (2015) Antihypertensive peptides from food proteins. Annu Rev Food Sci Technol 6:235ā€“262

    Google ScholarĀ 

  • Aluko RE (2019) Food protein-derived renin-inhibitory peptides: in vitro and in vivo properties. J Food Biochem 43(1):e12648

    Google ScholarĀ 

  • Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, de LCD R, TMC P, Campagnaro BP, De Pauw E, Vasquez EC, Quinton L (2019) Identification of new bioactive peptides from kefir milk through proteopeptidomics: bioprospection of antihypertensive molecules. Food Chem 282:109ā€“119

    Google ScholarĀ 

  • Antila P, Paakkari I, JƤrvinen A, Mattila MJ, Laukkanen M, Pihlanto-LeppƤlƤ A, MƤntsƤlƤ P, Hellman J (1991) Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. Int Dairy J 1(4):215ā€“229

    Google ScholarĀ 

  • Arrutia F, Rubio R, Riera FA (2016) Production and membrane fractionation of bioactive peptides from a whey protein concentrate. J Food Eng 184:1ā€“9

    Google ScholarĀ 

  • Aslam H, Ruusunen A, Berk M, Loughman A, Rivera L, Pasco JA, Jacka FN (2019) Unravelled facets of milk derived opioid peptides: a focus on gut physiology, fractures and obesity. Int J Food Sci Nutr:1ā€“14

    Google ScholarĀ 

  • Assem FM, Abd El-Gawad MAM, Kassem JM, Abd El-Salam MH (2018) Proteolysis and antioxidant activity of peptic, tryptic and chymotryptic hydrolysates of cow, buffalo, goat and camel caseins. Int J Dairy Technol 71(1):236ā€“242

    Google ScholarĀ 

  • Azevedo RA, Ferreira AK, Auada AVV, Pasqualoto KFM, Marques-Porto R, Maria DA, Lebrun I (2012) Antitumor effect of cationic INKKI peptide from bovine Ī²-casein on melanoma B16F10. J Cancer Ther 3(04):237

    Google ScholarĀ 

  • Berthou J, Migliore-Samour D, Lifchitz A, DelettrĆ© J, Floc'h F, JollĆØs P (1987) Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Lett 218(1):55ā€“58

    Google ScholarĀ 

  • Bhat ZF, Kumar S, Bhat HF (2015) Bioactive peptides of animal origin: a review. J Food Sci Technol 52(9):5377ā€“5392

    Google ScholarĀ 

  • Bidasolo IB, Ramos M, Gomez-Ruiz JA (2012) In vitro simulated gastrointestinal digestion of donkeysā€™ milk. Peptide characterization by high performance liquid chromatographyā€“tandem mass spectrometry. Int Dairy J 24(2):146ā€“152

    Google ScholarĀ 

  • Bintsis T, Vafopoulou-Mastrojiannaki A, Litopoulou-Tzanetaki E, Robinson RK (2003) Protease, peptidase and esterase activities by lactobacilli and yeast isolates from feta cheese brine. J Appl Microbiol 95(1):68ā€“77

    Google ScholarĀ 

  • Birkemo GA, Oā€™Sullivan O, Ross RP, Hill C (2009) Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J Appl Microbiol 106(1):233ā€“240

    Google ScholarĀ 

  • Boelsma E, Kloek J (2010) IPP-rich milk protein hydrolysate lowers blood pressure in subjects with stage 1 hypertension, a randomized controlled trial. Nutr J 9(1):52

    Google ScholarĀ 

  • Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, Benamouzig R, TomĆ© D, Leonil J (2013) Sequential release of milk proteinā€“derived bioactive peptides in the jejunum in healthy humans. Am J Clin Nutr 97(6):1314ā€“1323

    Google ScholarĀ 

  • Boutrou R, Henry G, Sanchez-Rivera L (2015) On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: a review. Dairy Sci Technol 95(6):815ā€“829

    Google ScholarĀ 

  • Brandelli A, Daroit DJ, CorrĆŖa APF (2015) Whey as a source of peptides with remarkable biological activities. Food Res Int 73:149ā€“161

    Google ScholarĀ 

  • CermeƱo M, FitzGerald RJ, O'Brien NM (2016) In vitro antioxidant and immunomodulatory activity of transglutaminase-treated sodium caseinate hydrolysates. Int Dairy J 63:107ā€“114

    Google ScholarĀ 

  • Chabance B, JollĆØs P, Izquierdo C, Mazoyer E, Francoual C, Drouet L, Fiat A-M (1995) Characterization of an antithrombotic peptide from Ī±-casein in newborn plasma after milk ingestion. Br J Nutr 73(4):583ā€“590

    Google ScholarĀ 

  • Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, JollĆØs P, Fiat AM (1998) Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 80(2):155ā€“165

    Google ScholarĀ 

  • Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205ā€“222

    Google ScholarĀ 

  • Chatterjee A, Kanawjia SK, Khetra Y, Saini P (2015a) Discordance between in silico & in vitro analyses of ACE inhibitory & antioxidative peptides from mixed milk tryptic whey protein hydrolysate. J Food Sci Technol 52(9):5621ā€“5630

    Google ScholarĀ 

  • Chatterjee A, Kanawjia SK, Khetra Y, Saini P (2015b) Discordance between in silico & in vitro analyses of ACE inhibitory & antioxidative peptides from mixed milk tryptic whey protein hydrolysate. J Food Sci Technol 52(9):5621ā€“5630

    Google ScholarĀ 

  • Chaves-LĆ³pez C, Serio A, Martuscelli M, Paparella A, Osorio-Cadavid E, Suzzi G (2011) Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on enterococci population. Food Microbiol 28(5):1041ā€“1047

    Google ScholarĀ 

  • Chaves-LĆ³pez C, Tofalo R, Serio A, Paparella A, Sacchetti G, Suzzi G (2012) Yeasts from Colombian Kumis as source of peptides with angiotensin I converting enzyme (ACE) inhibitory activity in milk. Int J Food Microbiol 159(1):39ā€“46

    Google ScholarĀ 

  • Chaves-LĆ³pez C, Serio A, Paparella A, Martuscelli M, Corsetti A, Tofalo R, Suzzi G (2014) Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol 42:117ā€“121

    Google ScholarĀ 

  • Cheison SC, Kulozik U (2017) Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: a review. Crit Rev Food Sci Nutr 57(2):418ā€“453

    Google ScholarĀ 

  • Chiba H, Tani F, Yoshikawa M (1989) Opioid antagonist peptides derived from kappa-casein. J Dairy Res 56(3):363ā€“366

    Google ScholarĀ 

  • Cicero AFG, Gerocarni B, Laghi L, Borghi C (2010) Blood pressure lowering effect of lactotripeptides assumed as functional foods: a meta-analysis of current available clinical trials. J Hum Hypertens 25:425

    Google ScholarĀ 

  • Cicero AFG, Aubin F, Azais-Braesco V, Borghi C (2013) Do the Lactotripeptides isoleucineā€“Prolineā€“Proline and Valineā€“Prolineā€“Proline reduce systolic blood pressure in European subjects? A meta-analysis of randomized controlled trials. Am J Hypertens 26(3):442ā€“449

    Google ScholarĀ 

  • Contreras MM, HernĆ”ndez-Ledesma B, Amigo L, MartĆ­n-Ɓlvarez PJ, Recio I (2011) Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: optimization by response surface methodology. LWT Food Sci Technol 44(1):9ā€“15

    Google ScholarĀ 

  • Contreras MM, Sanchez D, Sevilla MƁ, Recio I, Amigo L (2013) Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestion. Int Dairy J 32(2):71ā€“78

    Google ScholarĀ 

  • Corrochano AR, Buckin V, Kelly PM, Giblin L (2018) Invited review: whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci 101(6):4747ā€“4761

    Google ScholarĀ 

  • Coste M, Rochet V, LĆ©onil J, MollĆ© D, Bouhallab S, TomĆ© D (1992) Identification of C-terminal peptides of bovine Ī²-casein that enhance proliferation of rat lymphocytes. Immunol Lett 33(1):41ā€“46

    Google ScholarĀ 

  • de Castro RJS, Bagagli MP, Sato HH (2015) Improving the functional properties of milk proteins: focus on the specificities of proteolytic enzymes. Curr Opin Food Sci 1:64ā€“69

    Google ScholarĀ 

  • de Oliveira MR, Silva TJ, Barros E, GuimarĆ£es VM, Baracat-Pereira MC, Eller MR, dos Reis Coimbra JS, de Oliveira EB (2018) Anti-hypertensive peptides derived from caseins: mechanism of physiological action, production bioprocesses, and challenges for food applications. Appl Biochem Biotechnol 185(4):884ā€“908

    Google ScholarĀ 

  • Demers-Mathieu V, Gauthier SF, Britten M, Fliss I, Robitaille G, Jean J (2013) Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. Int Dairy J 28(2):94ā€“101

    Google ScholarĀ 

  • dos Santos Aguilar JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253ā€“262

    Google ScholarĀ 

  • Doyen A, Husson E, Bazinet L (2013) Use of an electrodialytic reactor for the simultaneous Ī²-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides. Food Chem 136(3):1193ā€“1202

    Google ScholarĀ 

  • Dullius A, Goettert MI, de Souza CFV (2018) Whey protein hydrolysates as a source of bioactive peptides for functional foodsĀ ā€“ biotechnological facilitation of industrial scale-up. J Funct Foods 42:58ā€“74

    Google ScholarĀ 

  • Dziuba M, Dziuba B (2010) In silico analysis of bioactive peptides. In: Bioactive proteins and peptides as functional foods and nutraceuticals, In, pp 325ā€“340

    Google ScholarĀ 

  • Dziuba B, Dziuba M (2014) New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatic studies. Int J Mol Sci 15(8):14531ā€“14545

    Google ScholarĀ 

  • Ebner J, AÅŸĆ§Ä± Arslan A, Fedorova M, Hoffmann R, KĆ¼Ć§Ć¼kƧetin A, Pischetsrieder M (2015) Peptside profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J Proteome 117:41ā€“57

    Google ScholarĀ 

  • Eisele T, Stressler T, Kranz B, Fischer L (2013) Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur Food Res Technol 236(3):483ā€“490

    Google ScholarĀ 

  • El-Sayed M, Awad S (2019) Milk bioactive peptides: antioxidant, antimicrobial and anti-diabetic activities. Biochemistry 7(1):22ā€“23

    Google ScholarĀ 

  • FernĆ”ndez A, Zhu Y, FitzGerald RJ, Riera FA (2014) Membrane fractionation of a Ī²-lactoglobulin tryptic digest: effect of the membrane characteristics. J Chem Technol Biotechnol 89(4):508ā€“515

    Google ScholarĀ 

  • FernĆ”ndez-TomĆ© S, MartĆ­nez-Maqueda D, GirĆ³n R, Goicoechea C, Miralles B, Recio I (2016) Novel peptides derived from Ī±s1-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. J Funct Foods 25:466ā€“476

    Google ScholarĀ 

  • Ferreira AD, Viljoen BC (2003) Yeasts as adjunct starters in matured Cheddar cheese. Int J Food Microbiol 86(1):131ā€“140

    Google ScholarĀ 

  • Ferreira IMPLVO, Pinho O, Monteiro D, Faria S, Cruz S, Perreira A, Roque AC, Tavares P (2010) Short communication: effect of kefir grains on proteolysis of major milk proteins. J Dairy Sci 93(1):27ā€“31

    Google ScholarĀ 

  • FitzGerald RJ (1998) Potential uses of Caseinophosphopeptides. Int Dairy J 8(5):451ā€“457

    Google ScholarĀ 

  • FitzGerald RJ, Meisel H (1999) Lactokinins: whey protein-derived ACE inhibitory peptides. Food Nahrung 43(3):165ā€“167

    Google ScholarĀ 

  • FitzGerald RJ, Murray BA (2006) Bioactive peptides and lactic fermentations. Int J Dairy Technol 59(2):118ā€“125

    Google ScholarĀ 

  • FitzGerald RJ, Murray BA, Walsh DJ (2004) Hypotensive peptides from milk proteins. J Nutr 134(4):980Sā€“988S

    Google ScholarĀ 

  • Foltz M, Meynen EE, Bianco V, Van Platerink C, Koning TMMG, Kloek J (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J Nutr 137(4):953ā€“958

    Google ScholarĀ 

  • Frieden TR, Jaffe MG (2018) Saving 100 million lives by improving global treatment of hypertension and reducing cardiovascular disease risk factors. J Clin Hypertens 20(2):208ā€“211

    Google ScholarĀ 

  • Fukunishi Y, Yamasaki S, Yasumatsu I, Takeuchi K, Kurosawa T, Nakamura H (2017) Quantitative structure-activity relationship (QSAR) models for docking score correction. Mol Inf 36(1ā€“2):1600013

    Google ScholarĀ 

  • GarcĆ­a-Tejedor A, SĆ”nchez-Rivera L, CastellĆ³-Ruiz M, Recio I, Salom JB, Manzanares P (2014) Novel antihypertensive Lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition. J Agric Food Chem 62(7):1609ā€“1616

    Google ScholarĀ 

  • Geerlings A, Villar IC, Hidalgo Zarco F, SĆ”nchez M, Vera R, Zafra Gomez A, Boza J, Duarte J (2006) Identification and characterization of novel angiotensin-converting enzyme inhibitors obtained from goat milk. J Dairy Sci 89(9):3326ā€“3335

    Google ScholarĀ 

  • Geraedts MCP, Troost FJ, Fischer MAJG, Edens L, Saris WHM (2011) Direct induction of CCK and GLP-1 release from murine endocrine cells by intact dietary proteins. Mol Nutr Food Res 55(3):476ā€“484

    Google ScholarĀ 

  • Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit Rev Food Sci Nutr 42(3):223ā€“239

    Google ScholarĀ 

  • GĆ³mez-Ruiz JƁ, Ramos M, Recio I (2007) Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis 28(22):4202ā€“4211

    Google ScholarĀ 

  • GonzĆ”lez-RĆ”bade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MC (2011) Production of plant proteases in vivo and in vitroĀ ā€” a review. Biotechnol Adv 29(6):983ā€“996

    Google ScholarĀ 

  • Guinane CM, Kent RM, Norberg S, O'Connor PM, Cotter PD, Hill C, Fitzgerald GF, Stanton C, Ross RP (2015) Generation of the antimicrobial peptide caseicin a from casein by hydrolysis with thermolysin enzymes. Int Dairy J 49:1ā€“7

    Google ScholarĀ 

  • Guo L, Harnedy PA, Li B, Hou H, Zhang Z, Zhao X, FitzGerald RJ (2014) Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci Technol 37(2):92ā€“105

    Google ScholarĀ 

  • Gupta A, Mann B, Kumar R, Ram Bhagat S (2010) Identification of antioxidant peptides in cheddar cheese made with adjunct culture lactobacillus casei ssp. casei 300. Milchwissenschaft 65(4):396ā€“399

    Google ScholarĀ 

  • Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Int J Biol Macromol 128:254ā€“267

    Google ScholarĀ 

  • Hafeez Z, Cakir-Kiefer C, Girardet J-M, Jardin J, Perrin C, Dary A, Miclo L (2013) Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus. Appl Microbiol Biotechnol 97(22):9787ā€“9799

    Google ScholarĀ 

  • Hafeez Z, Cakir-Kiefer C, Roux E, Perrin C, Miclo L, Dary-Mourot A (2014) Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res Int 63:71ā€“80

    Google ScholarĀ 

  • Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2006) Casein-derived antimicrobial peptides generated by lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72(3):2260

    Google ScholarĀ 

  • He R, Ma H, Zhao W, Qu W, Zhao J, Luo L, Zhu W (2012, 2012) Modeling the QSAR of ACE-inhibitory peptides with ANN and its applied illustration. Int J Pept

    Google ScholarĀ 

  • HernĆ”ndez-Ledesma B, Recio I, Ramos M, Amigo L (2002) Preparation of ovine and caprine Ī²-lactoglobulin hydrolysates with ACE-inhibitory activity. Identification of active peptides from caprine Ī²-lactoglobulin hydrolysed with thermolysin. Int Dairy J 12(10):805ā€“812

    Google ScholarĀ 

  • HernĆ”ndez-Ledesma B, Amigo L, Ramos M, Recio I (2004) Release of angiotensin converting enzyme-inhibitory peptides by simulated gastrointestinal digestion of infant formulas. Int Dairy J 14(10):889ā€“898

    Google ScholarĀ 

  • HernĆ”ndez-Ledesma B, DĆ”valos A, BartolomĆ© B, Amigo L (2005) Preparation of antioxidant enzymatic Hydrolysates from Ī±-Lactalbumin and Ī²-Lactoglobulin. Identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53(3):588ā€“593

    Google ScholarĀ 

  • HernĆ”ndez-Ledesma B, del Mar CM, Recio I (2011) Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interf Sci 165(1):23ā€“35

    Google ScholarĀ 

  • Hirota T, Nonaka A, Matsushita A, Uchida N, Ohki K, Asakura M, Kitakaze M (2011) Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessel 26(5):549ā€“556

    Google ScholarĀ 

  • Hogan S, Zhang L, Li J, Wang H, Zhou K (2009) Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chem 117(3):438ā€“443

    Google ScholarĀ 

  • Holder A, Birke A, Eisele T, Klaiber I, Fischer L, Hinrichs J (2013) Selective isolation of angiotensin-I-converting enzyme-inhibitory peptides from micellar casein and Ī²-casein hydrolysates via ultrafiltration. Int Dairy J 31(1):34ā€“40

    Google ScholarĀ 

  • Hoog Antink MM, Sewczyk T, Kroll S, Ɓrki P, Beutel S, Rezwan K, Maas M (2019) Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochem Eng J 147:89ā€“99

    Google ScholarĀ 

  • Horner K, Drummond E, Brennan L (2016) Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutr Res Rev 29(1):91ā€“101

    Google ScholarĀ 

  • IDF (2015) IDF Diabetes Atlas, 7th edn. International Diabetes Federation, Brussels

    Google ScholarĀ 

  • Irshad I, Kanekanian A, Peters A, Masud T (2015) Antioxidant activity of bioactive peptides derived from bovine casein hydrolysate fractions. J Food Sci Technol 52(1):231ā€“239

    Google ScholarĀ 

  • Ishida Y, Shibata Y, Fukuhara I, Yano Y, Takehara I, Kaneko K (2011) Effect of an excess intake of casein hydrolysate containing val-pro-pro and ile-pro-pro in subjects with normal blood pressure, high-normal blood pressure, or mild hypertension. Biosci Biotechnol Biochem 75(3):427ā€“433

    Google ScholarĀ 

  • Iwaniak A, Minkiewicz P, Darewicz M, Protasiewicz M, Mogut D (2015) Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J Funct Foods 16:334ā€“351

    Google ScholarĀ 

  • Jiang Z, Tian B, Brodkorb A, Huo G (2010) Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein. Food Chem 123(3):779ā€“786

    Google ScholarĀ 

  • Jiang C, Liu L, Li X, Ma L, Du L, Zhao Y, Li D, Zhao W (2018) Separation and purification of hypocholesterolaemic peptides from whey protein and their stability under simulated gastrointestinal digestion. Int J Dairy Technol 71(2):460ā€“468

    Google ScholarĀ 

  • Jin Y, Yu Y, Qi Y, Wang F, Yan J, Zou H (2016) Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. J Proteome 141:24ā€“46

    Google ScholarĀ 

  • Jrad Z, El Hatmi H, Adt I, Girardet J-M, Cakir-Kiefer C, Jardin J, Degraeve P, Khorchani T, Oulahal N (2014) Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Sci Technol 94(3):205ā€“224

    Google ScholarĀ 

  • Kahn BB (1998) Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92(5):593ā€“596

    Google ScholarĀ 

  • Karaś M (2019) Influence of physiological and chemical factors on the absorption of bioactive peptides. Int J Food Sci Technol 54(5):1486ā€“1496

    Google ScholarĀ 

  • Kaur J, Kumar V, Sharma K, Kaur S, Gat Y, Goyal A, Tanwar B (2019) Opioid peptides: an overview of functional significance. Int J Pept Res Ther

    Google ScholarĀ 

  • Kayser H, Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett 383(1ā€“2):18ā€“20

    Google ScholarĀ 

  • Kenny O, FitzGerald RJ, Oā€™Cuinn G, Beresford T, Jordan K (2006) Autolysis of selected lactobacillus helveticus adjunct strains during Cheddar cheese ripening. Int Dairy J 16(7):797ā€“804

    Google ScholarĀ 

  • Khan MU, Pirzadeh M, Fƶrster CY, Shityakov S, Shariati MA (2018) Role of milk-derived antibacterial peptides in modern food biotechnology: their synthesis, applications and future perspectives. Biomol Ther 8(4):110

    Google ScholarĀ 

  • Kibangou IB, Bouhallab S, Henry G, Bureau F, Allouche S, Blais A, GuĆ©rin P, Arhan P, BouglĆ© DL (2005) Milk proteins and Iron absorption: contrasting effects of different caseinophosphopeptides. Pediatr Res 58(4):731ā€“734

    Google ScholarĀ 

  • Klein N, Zourari A, Lortal S (2002) Peptidase activity of four yeast species frequently encountered in dairy productsā€”comparison with several dairy bacteria. Int Dairy J 12(10):853ā€“861

    Google ScholarĀ 

  • Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1(2):177ā€“187

    Google ScholarĀ 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945ā€“960

    Google ScholarĀ 

  • Kost NV, Sokolov ŠžY, Kurasova ŠžB, Dmitriev AD, Tarakanova JN, Gabaeva ŠœV, Zolotarev YA, Dadayan ŠK, Grachev SA, Korneeva Š•V, Mikheeva IG, Zozulya ŠA (2009) Ī²-Casomorphins-7 in infants on different type of feeding and different levels of psychomotor development. Peptides 30(10):1854ā€“1860

    Google ScholarĀ 

  • Lacroix IME, Li-Chan ECY (2012a) Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int Dairy J 25(2):97ā€“102

    Google ScholarĀ 

  • Lacroix IME, Li-Chan ECY (2012b) Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J Funct Foods 4(2):403ā€“422

    Google ScholarĀ 

  • Lacroix IME, Li-Chan ECY (2013) Inhibition of dipeptidyl peptidase (DPP)-IV and Ī±-glucosidase activities by pepsin-treated whey proteins. J Agric Food Chem 61(31):7500ā€“7506

    Google ScholarĀ 

  • Lacroix IME, Li-Chan ECY (2014) Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides 54:39ā€“48

    Google ScholarĀ 

  • Lacroix IME, Meng G, Cheung IWY, Li-Chan ECY (2016) Do whey protein-derived peptides have dual dipeptidyl-peptidase IV and angiotensin I-converting enzyme inhibitory activities? J Funct Foods 21:87ā€“96

    Google ScholarĀ 

  • Lammi C, Aiello G, Boschin G, Arnoldi A (2019) Multifunctional peptides for the prevention of cardiovascular disease: a new concept in the area of bioactive food-derived peptides. J Funct Foods 55:135ā€“145

    Google ScholarĀ 

  • Laurent B, Loubna F (2013) Separation of bioactive peptides by membrane processes: technologies and devices. Recent Pat Biotechnol 7(1):9ā€“27

    Google ScholarĀ 

  • Le Maux S, Nongonierma AB, Murray B, Kelly PM, FitzGerald RJ (2015) Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Res Int 77:534ā€“539

    Google ScholarĀ 

  • Le Maux S, Nongonierma AB, FitzGerald RJ (2017) Peptide composition and dipeptidyl peptidase IV inhibitory properties of Ī²-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Res Int 99:84ā€“90

    Google ScholarĀ 

  • Lee N, Cheng J, Enomoto T, Nakamura I (2006) The antihypertensive activity of angiotensin-converting enzyme inhibitory peptide containing in bovine lactoferrin. Chin J Physiol 49(2):67

    Google ScholarĀ 

  • Li Y-W, Li B (2013) Characterization of structureā€“antioxidant activity relationship of peptides in free radical systems using QSAR models: key sequence positions and their amino acid properties. J Theor Biol 318:29ā€“43

    Google ScholarĀ 

  • Li Y, Sadiq FA, Liu T, Chen J, He G (2015) Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. J Funct Foods 16:278ā€“288

    Google ScholarĀ 

  • Liceaga AM, Hall F (2019) Nutritional, functional and bioactive protein Hydrolysates. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic, Oxford, pp 456ā€“464

    Google ScholarĀ 

  • Li-Chan ECY (2015) Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci 1:28ā€“37

    Google ScholarĀ 

  • Lin K, Zhang L, Han X, Meng Z, Zhang J, Wu Y, Cheng D (2018a) Quantitative structure-activity relationship modeling coupled with molecular docking analysis in screening of angiotensin I-converting enzyme inhibitory peptides from qula casein hydrolysates obtained by two-enzyme combination hydrolysis. J Agric Food Chem 66(12):3221ā€“3228

    Google ScholarĀ 

  • Lin K, Zhang LW, Han X, Xin L, Meng ZX, Gong PM, Cheng DY (2018b) Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis. Food Chem 254:340ā€“347

    Google ScholarĀ 

  • Liu Y, Pischetsrieder M (2017) Identification and relative quantification of bioactive peptides sequentially released during simulated gastrointestinal digestion of commercial kefir. J Agric Food Chem 65(9):1865ā€“1873

    Google ScholarĀ 

  • Liu Z, Udenigwe CC (2019) Role of food-derived opioid peptides in the central nervous and gastrointestinal systems. J Food Biochem 43(1):e12629

    Google ScholarĀ 

  • Liu H, Tu M, Cheng S, Chen H, Wang Z, Du M (2019) An anticoagulant peptide from beta-casein: identification, structure and molecular mechanism. Food Funct 10(2):886ā€“892

    Google ScholarĀ 

  • LĆ³pez-ExpĆ³sito I, QuirĆ³s A, Amigo L, Recio I (2007) Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Lait 87(4ā€“5):241ā€“249

    Google ScholarĀ 

  • LĆ³pez-ExpĆ³sito I, Pellegrini A, Amigo L, Recio I (2008) Synergistic effect between different milk-derived peptides and proteins. J Dairy Sci 91(6):2184ā€“2189

    Google ScholarĀ 

  • Lorenzo JM, Munekata PES, GĆ³mez B, Barba FJ, Mora L, PĆ©rez-SantaescolĆ”stica C, ToldrĆ” F (2018) Bioactive peptides as natural antioxidants in food productsĀ ā€“ a review. Trends Food Sci Technol 79:136ā€“147

    Google ScholarĀ 

  • Loukas S, Varoucha D, Zioudrou C, Streaty RA, Klee WA (1983) Opioid activities and structures of alpha-casein-derived exorphins. Biochemistry 22(19):4567ā€“4573

    Google ScholarĀ 

  • Ma J-J, Mao X-Y, Wang Q, Yang S, Zhang D, Chen S-W, Li Y-H (2014) Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT Food Sci Technol 56(2):296ā€“302

    Google ScholarĀ 

  • Mader JS, Salsman J, Conrad DM, Hoskin DW (2005) Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther 4(4):612ā€“624

    Google ScholarĀ 

  • Mao X-Y, Cheng X, Wang X, Wu S (2011) Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 126(2):484ā€“490

    Google ScholarĀ 

  • MartĆ­nez-Medina GA, BarragĆ”n AP, Ruiz HA, Ilyina A, MartĆ­nez HernĆ”ndez JL, RodrĆ­guez-Jasso RM, Hoyos-Concha JL, Aguilar-GonzĆ”lez CN (2019) Chapter 14 - fungal proteases and production of bioactive peptides for the food industry. In: Kuddus M (ed) Enzymes in food biotechnology. Academic, San Diego, pp 221ā€“246

    Google ScholarĀ 

  • Meisel H, FitzGerald RJ (2000) Opioid peptides encrypted in intact milk protein sequences. Br J Nutr 84(Suppl 1):S27ā€“S31

    Google ScholarĀ 

  • Meisel H, Bernard H, Fairweather-Tait S, FitzGerald RJ, Hartmann R, Lane CN, McDonagh D, Teucher B, Wal JM (2003) Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. Br J Nutr 89(3):351ā€“358

    Google ScholarĀ 

  • Miguel M, Recio I, Ramos M, Delgado MA, Aleixandre MA (2006) Antihypertensive effect of peptides obtained from Enterococcus faecalis-fermented milk in rats. J Dairy Sci 89(9):3352ā€“3359

    Google ScholarĀ 

  • Miguel M, GĆ³mez-Ruiz JƁ, Recio I, Aleixandre A (2010) Changes in arterial blood pressure after single oral administration of milk-casein-derived peptides in spontaneously hypertensive rats. Mol Nutr Food Res 54(10):1422ā€“1427

    Google ScholarĀ 

  • Mohanty D, Jena R, Choudhury PK, Pattnaik R, Mohapatra S, Saini MR (2016a) Milk derived antimicrobial bioactive peptides: a review. Int J Food Prop 19(4):837ā€“846

    Google ScholarĀ 

  • Mohanty DP, Mohapatra S, Misra S, Sahu PS (2016b) Milk derived bioactive peptides and their impact on human healthĀ ā€“ a review. Saudi J Biol Sci 23(5):577ā€“583

    Google ScholarĀ 

  • Mudgil P, Kamal H, Yuen GC, Maqsood S (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem 259:46ā€“54

    Google ScholarĀ 

  • Mullally MM, Meisel H, FitzGerald RJ (1996) Synthetic peptides corresponding to a-lactalbumin and b-lactoglobulin sequences with angiotensin-1-converting enzyme inhibitory activity. Biol Chem Hoppe Seyler 377(4):259ā€“260

    Google ScholarĀ 

  • Mullally MM, Meisel H, FitzGerald RJ (1997) Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine Ī²-lactoglobulin. FEBS Lett 402(2ā€“3):99ā€“101

    Google ScholarĀ 

  • Murray NM, O'Riordan D, Jacquier JC, O'Sullivan M, Holton TA, Wynne K, Robinson RC, Barile D, Nielsen SD, Dallas DC (2018) Peptidomic screening of bitter and nonbitter casein hydrolysate fractions for insulinogenic peptides. J Dairy Sci 101(4):2826ā€“2837

    Google ScholarĀ 

  • Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, Tadashi K, Kuwata T (2001) Identification of novel hypocholesterolemic peptides derived from bovine milk Ī²-lactoglobulin. Biochem Biophys Res Commun 281(1):11ā€“17

    Google ScholarĀ 

  • Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995a) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 78(4):777ā€“783

    Google ScholarĀ 

  • Nakamura Y, Yamamoto N, Sakai K, Takano T (1995b) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78(6):1253ā€“1257

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2011) Enzymes exogenous to milk in dairy technology | proteinases. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Academic, San Diego, pp 289ā€“296

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2012) Biofunctional properties of Caseinophosphopeptides in the Oral cavity. Caries Res 46(3):234ā€“267

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2013a) Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: influence of fractionation, stability to simulated gastrointestinal digestion and foodā€“drug interaction. Int Dairy J 32(1):33ā€“39

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2013b) Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J Funct Foods 5(4):1909ā€“1917

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2014a) An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem 165:489ā€“498

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2014b) Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem 145:845ā€“852

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2015) The scientific evidence for the role of milk protein-derived bioactive peptides in humans: a review. J Funct Foods 17:640ā€“656

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2016a) Learnings from quantitative structure-activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review. RSC Adv 6(79):75400ā€“75413

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2016b) Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 79:1ā€“7

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2018) Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 410(15):3407ā€“3423

    Google ScholarĀ 

  • Nongonierma AB, FitzGerald RJ (2019) Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J Food Biochem 43(1):e12451

    Google ScholarĀ 

  • Nongonierma AB, Mooney C, Shields DC, FitzGerald RJ (2014) In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 57:43ā€“51

    Google ScholarĀ 

  • Nongonierma AB, Le Maux S, Hamayon J, FitzGerald RJ (2016a) Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of Ī±-lactalbumin. Food Funct 7(8):3437ā€“3443

    Google ScholarĀ 

  • Nongonierma AB, Oā€™Keeffe MB, FitzGerald RJ (2016b) Milk protein hydrolysates and bioactive peptides. In: McSweeney PLH, O'Mahony JA (eds) Advanced dairy chemistry, Proteins: applied aspects, vol 1B. Springer, New York, pp 417ā€“482

    Google ScholarĀ 

  • Nongonierma AB, Maux SL, Esteveny C, FitzGerald RJ (2017a) Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV inhibitory properties. J Sci Food Agric 97(4):1093ā€“1101

    Google ScholarĀ 

  • Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ (2017b) Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J Funct Foods 34:49ā€“58

    Google ScholarĀ 

  • Nongonierma AB, Dellafiora L, Paolella S, Galaverna G, Cozzini P, FitzGerald RJ (2018a) In silico approaches applied to the study of peptide analogs of Ile-Pro-Ile in relation to their dipeptidyl peptidase IV inhibitory properties. Front Endocrinol 9

    Google ScholarĀ 

  • Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald RJ (2018b) Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem 244:340ā€“348

    Google ScholarĀ 

  • Norris R, FitzGerald RJ (2013) Antihypertensive peptides from food proteins

    Google ScholarĀ 

  • Norris R, Casey F, FitzGerald RJ, Shields D, Mooney C (2012) Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chem 133(4):1349ā€“1354

    Google ScholarĀ 

  • Norris R, Poyarkov A, Oā€™Keeffe MB, FitzGerald RJ (2014) Characterisation of the hydrolytic specificity of Aspergillus niger derived prolyl endoproteinase on bovine Ī²-casein and determination of ACE inhibitory activity. Food Chem 156:29ā€“36

    Google ScholarĀ 

  • Norris R, Oā€™Keeffe MB, Poyarkov A, FitzGerald RJ (2015) Peptide identification and angiotensin converting enzyme (ACE) inhibitory activity in prolyl endoproteinase digests of bovine Ī±s-casein. Food Chem 188:210ā€“217

    Google ScholarĀ 

  • Oā€™Halloran J, Oā€™Sullivan M, Casey E (2019) Production of whey-derived DPP-IV inhibitory peptides using an enzymatic membrane reactor. Food Bioprocess Technol 12(5):799ā€“808

    Google ScholarĀ 

  • Oā€™Sullivan D, Lahart N, Oā€™Callaghan Y, Oā€™Brien NM, FitzGerald RJ (2013) Characterisation of the physicochemical, residual antigenicity and cell activity properties of transglutaminase cross-linked sodium caseinate hydrolysates. Int Dairy J 33(1):49ā€“54

    Google ScholarĀ 

  • O'Halloran F, Bruen C, McGrath B, Schellekens H, Murray B, Cryan JF, Kelly AL, McSweeney PLH, Giblin L (2018) A casein hydrolysate increases GLP-1 secretion and reduces food intake. Food Chem 252:303ā€“310

    Google ScholarĀ 

  • O'Keeffe MB, FitzGerald RJ (2014) Antioxidant effects of enzymatic hydrolysates of whey protein concentrate on cultured human endothelial cells. Int Dairy J 36(2):128ā€“135

    Google ScholarĀ 

  • O'Keeffe MB, FitzGerald RJ (2018) Whey protein hydrolysate induced modulation of endothelial cell gene expression. J Funct Foods 40:102ā€“109

    Google ScholarĀ 

  • O'Loughlin IB, Murray BA, Brodkorb A, FitzGerald RJ, Kelly PM (2014a) Production of whey protein isolate hydrolysate fractions with enriched ACE-inhibitory activity. Int Dairy J 38(2):101ā€“103

    Google ScholarĀ 

  • O'Loughlin IB, Murray BA, FitzGerald RJ, Brodkorb A, Kelly PM (2014b) Pilot-scale production of hydrolysates with altered bio-functionalities based on thermally-denatured whey protein isolate. Int Dairy J 34(1):146ā€“152

    Google ScholarĀ 

  • Onvani S, Haghighatdoost F, Surkan PJ, Azadbakht L (2017) Dairy products, satiety and food intake: a meta-analysis of clinical trials. Clin Nutr 36(2):389ā€“398

    Google ScholarĀ 

  • Otte J, Shalaby SMA, Zakora M, Nielsen MS (2007) Fractionation and identification of ACE-inhibitory peptides from Ī±-lactalbumin and Ī²-casein produced by thermolysin-catalysed hydrolysis. Int Dairy J 17(12):1460ā€“1472

    Google ScholarĀ 

  • Otte J, Lenhard T, Flambard B, SĆørensen KI (2011) Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profiles of milk fermented by selected strains of lactobacillus helveticus and Lactococcus lactis. Int Dairy J 21(4):229ā€“238

    Google ScholarĀ 

  • Pan Y, Lee A, Wan J, Coventry MJ, Michalski WP, Shiell B, Roginski H (2006) Antiviral properties of milk proteins and peptides. Int Dairy J 16(11):1252ā€“1261

    Google ScholarĀ 

  • Pan D, Cao J, Guo H, Zhao B (2012) Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem 130(1):121ā€“126

    Google ScholarĀ 

  • Parente E, Cogan TM, Powell IB (2017) Chapter 8 - Starter cultures: general aspects. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW (eds) Cheese, 4th edn. Academic, San Diego, pp 201ā€“226

    Google ScholarĀ 

  • Park YW, Nam MS (2015) Bioactive peptides in milk and dairy products: a review. Korean J Food Sci Anim Resour 35(6):831ā€“840

    Google ScholarĀ 

  • Parmar H, Hati S, Sakure A (2018) In vitro and in silico analysis of novel ACE-inhibitory bioactive peptides derived from fermented goat milk. Int J Pept Res Ther 24(3):441ā€“453

    Google ScholarĀ 

  • Pepe G, Tenore GC, Mastrocinque R, Stusio P, Campiglia P (2013) Potential anticarcinogenic peptides from bovine milk. J Amino Acids 2013

    Google ScholarĀ 

  • Perego S, Cosentino S, Fiorilli A, Tettamanti G, Ferraretto A (2012) Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels. J Nutr Biochem 23(7):808ā€“816

    Google ScholarĀ 

  • Perego S, Zabeo A, Marasco E, Giussani P, Fiorilli A, Tettamanti G, Ferraretto A (2013) Casein phosphopeptides modulate calcium uptake and apoptosis in Caco2 cells through their interaction with the TRPV6 calcium channel. J Funct Foods 5(2):847ā€“857

    Google ScholarĀ 

  • Phelan M, Aherne-Bruce SA, O'Sullivan D, FitzGerald RJ, O'Brien NM (2009) Potential bioactive effects of casein hydrolysates on human cultured cells. Int Dairy J 19(5):279ā€“285

    Google ScholarĀ 

  • Pihlanto-LeppƤlƤ A (2000) Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11(9):347ā€“356

    Google ScholarĀ 

  • Pihlanto-LeppƤlƤ A, Koskinen P, Piilola K, Tupasela T, Korhonen H (2000) Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 67(1):53ā€“64

    Google ScholarĀ 

  • Polaina J, MacCabe AP (2007) Industrial enzymes. Springer, New York

    Google ScholarĀ 

  • Power O, Jakeman P, FitzGerald RJ (2013) Antioxidative peptides: enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids 44(3):797ā€“820

    Google ScholarĀ 

  • Power O, FernĆ”ndez A, Norris R, Riera FA, FitzGerald RJ (2014a) Selective enrichment of bioactive properties during ultrafiltration of a tryptic digest of Ī²-lactoglobulin. J Funct Foods 9:38ā€“47

    Google ScholarĀ 

  • Power O, Nongonierma AB, Jakeman P, FitzGerald RJ (2014b) Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc Nutr Soc 73(1):34ā€“46

    Google ScholarĀ 

  • Pripp AH (2005) Initial proteolysis of milk proteins and its effect on formation of ACE-inhibitory peptides during gastrointestinal proteolysis: a bioinformatic, in silico, approach. Eur Food Res Technol 221(5):712ā€“716

    Google ScholarĀ 

  • Pripp AH (2008) Effect of peptides derived from food proteins on blood pressure: a meta-analysis of randomized controlled trials. Food Nutr Res 52

    Google ScholarĀ 

  • QuirĆ³s A, Ramos M, Muguerza B, Delgado MA, Miguel M, Aleixandre A, Recio I (2007) Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J 17(1):33ā€“41

    Google ScholarĀ 

  • Rahimi M, Ghaffari SM, Salami M, Mousavy SJ, Niasari-Naslaji A, Jahanbani R, Yousefinejad S, Khalesi M, Moosavi-Movahedi AA (2016) ACE- inhibitory and radical scavenging activities of bioactive peptides obtained from camel milk casein hydrolysis with proteinase K. Dairy Sci Technol 96(4):489ā€“499

    Google ScholarĀ 

  • Ramos BP, Rodriguez AP, Telle NE, Gonzalez JPF, Rodriguez MLR, Castro LP (2012) Optimized method for obtaining ace activity inhibitory peptides from whey, ace inhibitory peptides and food comprising them

    Google ScholarĀ 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62(3):597ā€“635

    Google ScholarĀ 

  • RodrĆ­guez-Carrio J, FernĆ”ndez A, Riera FA, SuĆ”rez A (2014) Immunomodulatory activities of whey Ī²-lactoglobulin tryptic-digested fractions. Int Dairy J 34(1):65ā€“73

    Google ScholarĀ 

  • Rojas-Ronquillo R, Cruz-Guerrero A, Flores-NĆ”jera A, RodrĆ­guez-Serrano G, GĆ³mez-Ruiz L, Reyes-Grajeda JP, JimĆ©nez-GuzmĆ”n J, GarcĆ­a-Garibay M (2012) Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by lactobacillus casei Shirota. Int Dairy J 26(2):147ā€“154

    Google ScholarĀ 

  • Roy MK, Kuwabara Y, Hara K, Watanabe Y, Tamai Y (2002) Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. J Dairy Sci 85(9):2065ā€“2074

    Google ScholarĀ 

  • Ruiz-GimĆ©nez P, Salom JB, Marcos JF, VallĆ©s S, MartĆ­nez-Maqueda D, Recio I, Torregrosa G, Alborch E, Manzanares P (2012) Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: identification of novel active peptides. Food Chem 131(1):266ā€“273

    Google ScholarĀ 

  • Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2015) Identification of anticancer peptides from bovine milk proteins and their potential roles in management of cancer: a critical review. Compr Rev Food Sci Food Saf 14(2):123ā€“138

    Google ScholarĀ 

  • Sah BNP, Vasiljevic T, McKechnie S, Donkor ON (2018) Antioxidative and antibacterial peptides derived from bovine milk proteins. Crit Rev Food Sci Nutr 58(5):726ā€“740

    Google ScholarĀ 

  • Saint-Sauveur D, Gauthier SF, Boutin Y, Montoni A (2008) Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int Dairy J 18(3):260ā€“270

    Google ScholarĀ 

  • Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh T (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J Dairy Sci 83(7):1434ā€“1440

    Google ScholarĀ 

  • Sames L, Weimann C, Erhardt G (2018) Mare's milk as a source of ACE-inhibitory peptides for human nutrition. Zuchtungskunde 90(3):168ā€“178

    Google ScholarĀ 

  • SanchĆ³n J, FernĆ”ndez-TomĆ© S, Miralles B, HernĆ”ndez-Ledesma B, TomĆ© D, Gaudichon C, Recio I (2018) Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem 239:486ā€“494

    Google ScholarĀ 

  • Santos-HernĆ”ndez M, TomĆ© D, Gaudichon C, Recio I (2018) Stimulation of CCK and GLP-1 secretion and expression in STC-1 cells by human jejunal contents and in vitro gastrointestinal digests from casein and whey proteins. Food Funct 9(9):4702ā€“4713

    Google ScholarĀ 

  • Schellekens H, Nongonierma AB, Clarke G, van Oeffelen WEPA, FitzGerald RJ, Dinan TG, Cryan JF (2014) Milk protein-derived peptides induce 5-HT2C-mediated satiety in vivo. Int Dairy J 38(1):55ā€“64

    Google ScholarĀ 

  • Sharma S, Singh R, Rana S (2011) Bioactive peptides: a review. Int J Bioautomation 15(4):223ā€“250

    Google ScholarĀ 

  • Shazly AB, He Z, El-Aziz MA, Zeng M, Zhang S, Qin F, Chen J (2017) Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem 232:753ā€“762

    Google ScholarĀ 

  • Shazly AB, Mu H, Liu Z, El-Aziz MA, Zeng M, Qin F, Zhang S, He Z, Chen J (2019) Release of antioxidant peptides from buffalo and bovine caseins: influence of proteases on antioxidant capacities. Food Chem 274:261ā€“267

    Google ScholarĀ 

  • Shori AB, Baba AS (2015) Fermented milk derives bioactive peptides with antihypertensive effects. Integr Food Nutr Metab 2(3):180ā€“183

    Google ScholarĀ 

  • Silveira ST, MartĆ­nez-Maqueda D, Recio I, HernĆ”ndez-Ledesma B (2013) Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in Ī²-lactoglobulin. Food Chem 141(2):1072ā€“1077

    Google ScholarĀ 

  • Singh S, Srivastava HK, Kishor G, Singh H, Agrawal P, Raghava GPS (2017) Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides. bioRxiv:212514

    Google ScholarĀ 

  • Sipola M, Finckenberg P, Santisteban J, Korpela R, Vapaatalo H, Nurminen M-L (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J Physiol Pharmacol 52(4 Pt 2):745ā€“754

    Google ScholarĀ 

  • Skrzypczak K, Gustaw W, Szwajgier D, Fornal E, Waśko A (2017) Īŗ-Casein as a source of short-chain bioactive peptides generated by lactobacillus helveticus. J Food Sci Technol 54(11):3679ā€“3688

    Google ScholarĀ 

  • Solanki D, Hati S, Sakure A (2017) In Silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int J Pept Res Ther 23(4):441ā€“459

    Google ScholarĀ 

  • Stressler T, Eisele T, Fischer L (2013) Simultaneous monitoring of twelve angiotensin I converting enzyme inhibitory peptides during enzymatic Ī²-casein hydrolysis using lactobacillus peptidases. Int Dairy J 30(2):96ā€“102

    Google ScholarĀ 

  • Suwal S, Rozoy Ɖ, Manenda M, Doyen A, Bazinet L (2017) Comparative study of in situ and ex situ enzymatic hydrolysis of milk protein and separation of bioactive peptides in an electromembrane reactor. ACS Sustain Chem Eng 5(6):5330ā€“5340

    Google ScholarĀ 

  • Svedberg J, de Haas J, Leimenstoll G, Paul F, Teschemacher H (1985) Demonstration of Ī²-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6(5):825ā€“830

    Google ScholarĀ 

  • Tauzin J, Miclo L, Gaillard J-L (2002) Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine Ī±S2-casein. FEBS Lett 531(2):369ā€“374

    Google ScholarĀ 

  • Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1ā€“11

    Google ScholarĀ 

  • Tavares T, Contreras MM, Amorim M, Pintado M, Recio I, Malcata FX (2011) Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes. Peptides 32(5):1013ā€“1019

    Google ScholarĀ 

  • ThĆ©olier J, Fliss I, Jean J, Hammami R (2014) MilkAMP: a comprehensive database of antimicrobial peptides of dairy origin. Dairy Sci Technol 94(2):181ā€“193

    Google ScholarĀ 

  • ToldrĆ” F, Reig M, Aristoy MC, Mora L (2018) Generation of bioactive peptides during food processing. Food Chem 267:395ā€“404

    Google ScholarĀ 

  • Tu M, Wang C, Chen C, Zhang R, Liu H, Lu W, Jiang L, Du M (2018) Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem 256:98ā€“104

    Google ScholarĀ 

  • Tulipano G, Faggi L, Nardone A, Cocchi D, Caroli AM (2015) Characterisation of the potential of Ī²-lactoglobulin and Ī±-lactalbumin as sources of bioactive peptides affecting incretin function: in silico and in vitro comparative studies. Int Dairy J 48:66ā€“72

    Google ScholarĀ 

  • Turner KM, Keogh JB, Clifton PM (2015) Dairy consumption and insulin sensitivity: a systematic review of short- and long-term intervention studies. Nutr Metab Cardiovasc Dis 25(1):3ā€“8

    Google ScholarĀ 

  • Udenigwe CC (2014) Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci Technol 36(2):137ā€“143

    Google ScholarĀ 

  • Uenishi H, Kabuki T, Seto Y, Serizawa A, Nakajima H (2012) Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int Dairy J 22(1):24ā€“30

    Google ScholarĀ 

  • Ugwu CP, Abarshi MM, Mada SB, Sanusi B, Nzelibe HC (2019) Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effects in vitro and in silico. Int J Pept Res Ther

    Google ScholarĀ 

  • Vermeirssen V, Van Der Bent A, Van Camp J, Van Amerongen A, Verstraete W (2004) A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 86(3):231ā€“239

    Google ScholarĀ 

  • WHO (2013) Global action plan for the prevention and control of noncommunicable diseases 2013ā€“2020

    Google ScholarĀ 

  • Winkelnkemper T, Schembecker G (2010) Purification performance index and separation cost indicator for experimentally based systematic downstream process development. Sep Purif Technol 72(1):34ā€“39

    Google ScholarĀ 

  • Wong JH, Liu Z, Law KWK, Liu F, Xia L, Wan DCC, Ng TB (2014) A study of effects of peptide fragments of bovine and human lactoferrins on activities of three key HIV-1 enzymes. Peptides 62:183ā€“188

    Google ScholarĀ 

  • Worsztynowicz P, Schmidt AO, Białas W, Grajek W (2019) Identification and partial characterization of proteolytic activity of Enterococcus faecalis relevant to their application in dairy industry. Acta Biochim Pol

    Google ScholarĀ 

  • Wu J, Aluko RE, Nakai S (2006a) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues. QSAR Comb Sci 25(10):873ā€“880

    Google ScholarĀ 

  • Wu J, Aluko RE, Nakai S (2006b) Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of Di- and tripeptides. J Agric Food Chem 54(3):732ā€“738

    Google ScholarĀ 

  • Xu J-Y, Qin L-Q, Wang P-Y, Li W, Chang C (2008) Effect of milk tripeptides on blood pressure: a meta-analysis of randomized controlled trials. Nutrition 24(10):933ā€“940

    Google ScholarĀ 

  • Yamada A, Sakurai T, Ochi D, Mitsuyama E, Yamauchi K, Abe F (2013) Novel angiotensin I-converting enzyme inhibitory peptide derived from bovine casein. Food Chem 141(4):3781ā€“3789

    Google ScholarĀ 

  • Yamamoto N, Maeno M, Takano T (1999) Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by lactobacillus helveticus CPN4. J Dairy Sci 82(7):1388ā€“1393

    Google ScholarĀ 

  • Yamauchi R, Ohinata K, Yoshikawa M (2003) Ī²-Lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptor. Peptides 24(12):1955ā€“1961

    Google ScholarĀ 

  • Yan J, Zhao J, Yang R, Zhao W (2019a) Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol

    Google ScholarĀ 

  • Yan J, Zhao J, Yang R, Zhao W (2019b) Bioactive peptides with antidiabetic properties: a review. Int J Food Sci Technol 54(6):1909ā€“1919

    Google ScholarĀ 

  • Zanutto-Elgui MR, Vieira JCS, DZD P, MAR B, Padilha PM, Elgui de Oliveira D, Fleuri LF (2019) Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chem 278:823ā€“831

    Google ScholarĀ 

  • Zenezini Chiozzi R, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S, Samperi R, LaganĆ  A (2016) Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry. Anal Bioanal Chem 408(20):5657ā€“5666

    Google ScholarĀ 

  • Zhang Y, Chen R, Ma H, Chen S (2015) Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LCā€“MS/MS. J Agric Food Chem 63(40):8819ā€“8828

    Google ScholarĀ 

  • Zhang Y, Chen R, Zuo F, Ma H, Zhang Y, Chen S (2016) Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. Int Dairy J 53:37ā€“44

    Google ScholarĀ 

  • Zhang D-D, Liu J-L, Jiang T-M, Li L, Fang G-Z, Liu Y-P, Chen L-J (2017) Influence of Kluyveromyces marxianus on proteins, peptides, and amino acids in lactobacillus-fermented milk. Food Sci Biotechnol 26(3):739ā€“748

    Google ScholarĀ 

  • Zhao M, Wei C, Yang X, Zhou J, Wang J, Gu F, Lei T, Qin Y (2016) The milk-derived hexapeptide PGPIPN inhibits the invasion and migration of human ovarian cancer cells by regulating the expression of MTA1 and NM23H1 genes. Int J Oncol 48(4):1721ā€“1729

    Google ScholarĀ 

  • Zucht H-D, Raida M, Adermann K, MƤgert H-J, Forssmann W-G (1995) Casocidin-I: a casein-Ī±s2 derived peptide exhibits antibacterial activity. FEBS Lett 372(2ā€“3):185ā€“188

    Google ScholarĀ 

Download references

Acknowledgements

The authors acknowledge funding under the National Development Plan 2007ā€“2013, through the Food Institutional Research Measure (FIRM), administered by the Department of Agriculture, Food and Marine, Ireland under grant issue 15/F/647 and the Dairy Processing Technology Centre (DPTC), Enterprise Ireland (Grant Agreement Number: TC 2014 0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. FitzGerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kleekayai, T., CermeƱo, M., FitzGerald, R.J. (2021). The Production of Bioactive Peptides from Milk Proteins. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_18

Download citation

Publish with us

Policies and ethics