Skip to main content

Heat-Stable Microbial Peptidases Associated with the Microbiota of Raw Milk

  • Chapter
  • First Online:
Agents of Change

Part of the book series: Food Engineering Series ((FSES))

Abstract

This chapter focuses on the heat stability of indigenous (expressed from different bovine tissues and cells, then secreted into milk) and bacterial (exogenous) dairy enzymes as well as thermal and non-thermal inactivation methods. The fundamentals of heat inactivation kinetics are outlined and the heat stabilities of the following enzymes are discussed in detail: alkaline phosphatase, γ-glutamyltransferase, lactoperoxidase, lipoprotein lipase, cathepsin D, plasmin, and peptidases from Pseudomonas ssp. Based on the presented kinetic data of these enzymes, inactivation lines revealing possible temperature-time combinations for a targeted inactivation were calculated. The given information should serve as a base to deduce individual parameters (e.g., time and temperature) for handling each dairy derived enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DM, Barach JT, Speck ML (1975) Heat resistant proteases produced in milk by psychrotorophic bacteria of dairy origin. J Dairy Sci 58:828–834

    Article  CAS  PubMed  Google Scholar 

  • Adams C, Dowling DN, O’Sullivan DJ et al (1994) Isolation of a gene (pbsC) required for siderophore biosynthesis in fluorescent Pseudomonas sp. strain M114. Mol Gen Genet MGG 243:515–524

    Article  CAS  PubMed  Google Scholar 

  • Aghajari N, Van Petegem F, Villeret V et al (2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins 50:636–647

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Pan JG, Rhee JS (1999) Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol 181:1847–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AiF 16588 N (2014) Schlussbericht FEI-Projekt “Hitzestabile mikrobielle Enzyme in Rohstoffen zur Milchverarbeitung - Qualitätssicherung, Entwicklung eines Testsystems und technologische Optionen”

    Google Scholar 

  • Alichanidis E, Andrews AT (1977) Some properties of the extracellular protease produced by the psychrotrophic bacterium Pseudomonas fluorescens strain AR-11. Biochim Biophys Acta Enzymol 485:424–433

    Article  CAS  Google Scholar 

  • Allison SD, Lu L, Kent AG et al (2014) Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Front Microbiol 5:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves MP, Salgado RL, Eller MR et al (2016) Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity. J Dairy Sci 99(10):7842–7851

    Article  CAS  PubMed  Google Scholar 

  • Anderson LM, Stockwell VO, Loper JE (2004) An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology 94:1228–1234

    Article  CAS  PubMed  Google Scholar 

  • Anema SG (2017) Storage stability and age gelation of reconstituted ultra-high temperature skim milk. Int Dairy J 75:56–67

    Article  CAS  Google Scholar 

  • Anema SG (2019) Age gelation, sedimentation, and creaming in UHT milk: a review. Compr Rev Food Sci Food Saf 18:140–166

    Article  CAS  PubMed  Google Scholar 

  • Ashdown LR, Koehler JM (1990) Production of hemolysin and other extracellular enzymes by clinical isolates of Pseudomonas pseudomallei. J Clin Microbiol 28:2331–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baglinière F, Matéos A, Tanguy G, et al (2013) Proteolysis of ultra high temperature-treated casein micelles by AprX enzyme from Pseudomonas fluorescens F induces their destabilisation. Int Dairy J 31:55–61

    Google Scholar 

  • Barach JT, Adams DM (1977) Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychotrophic Pseudomonas. Biochim Biophys Acta 485:417–423

    Article  CAS  PubMed  Google Scholar 

  • Barach JT, Adams DM, Speck ML (1976) Low temperature inactivation in milk of heat-resistant proteases from psychrotrophic bacteria. J Dairy Sci 59:391–395

    Article  CAS  Google Scholar 

  • Barach JTT, Adams DMM, Speck MLL (1978) Mechanism of low temperature inactivation of a heat-resistant bacterial protease in milk. J Dairy Sci 61:523–528

    Article  CAS  Google Scholar 

  • Baral A, Fox PF, O’Connor TP (1995) Isolation and characterization of an extracellular proteinase from Pseudomonas tolaasii. Phytochemistry 39:757–762

    Article  CAS  Google Scholar 

  • Barbano DM, Ma Y, Santos MV (2006) Influence of raw milk quality on fluid milk shelf life. J Dairy Sci 89(Supple):E15–E19

    Article  PubMed  Google Scholar 

  • Bardoel BW, van Kessel KPM, van Strijp JAG, Milder FJ (2012) Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA–AprI Interface and species selectivity. J Mol Biol 415:573–583

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ, Ito K, Nakajima Y, Yoshimoto T (2013) Handbook of Proteolytic Enzymes

    Google Scholar 

  • Baumann U (2013) Chapter 180 – Serralysin and related enzymes. In: Rawlings ND, Salvesen G (eds) Handbook of proteolytic enzymes, 3rd edn. Academic, Cambridge, pp 864–867

    Chapter  Google Scholar 

  • Baumann U, Wu S, Flaherty K et al (1993) 3-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a 2-domain protein with a calcium-binding parallel-beta roll motif. EMBO J 12:3357–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann U, Bauer M, Létoffé S et al (1995) Crystal structure of a complex between Serratia marcescens Metallo-protease and an inhibitor from Erwinia chrysanthemi. J Mol Biol 248:653–661

    Article  CAS  PubMed  Google Scholar 

  • Baur C, Krewinkel M, Kranz B et al (2015a) Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J 49:23–29

    Article  CAS  Google Scholar 

  • Baur C, Krewinkel M, Kutzli I et al (2015b) Isolation and characterisation of a heat-resistant peptidase from Pseudomonas panacis withstanding general UHT processes. Int Dairy J 49:46–55

    Article  CAS  Google Scholar 

  • Bendicho S, Martı́ G, Hernández T et al (2002) Determination of proteolytic activity in different milk systems. Food Chem 79:245–249

    Article  CAS  Google Scholar 

  • Birkeland SE, Stepaniak L, Sorhaug T (1985) Quantitative studies of heat-stable proteinase from Pseudomonas fluorescens P1 by the enzyme-linked immunosorbent assay. Appl Environ Microbiol 49:382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabeaud P, de Groot A, Bitter W et al (2001) Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol 183:2117–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne CP, Laing RR, Roy D et al (1994) Psychtotrophs in dairy products: their effects and their control. Crit Rev Food Sci Nutr 34:1–30

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Daniel RMM, Coolbear T (2003) Detection and impact of protease and lipase activities in milk and milk powders. Int Dairy J 13:255–275

    Article  CAS  Google Scholar 

  • Cheng X, de Bruijn I, van der Voort M et al (2013) The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep 5:608–619

    Article  PubMed  CAS  Google Scholar 

  • Chism GW, Huang AE, Marshall JA (1979) Sensitive assay for proteases in sterile milk. J Dairy Sci 62:1798–1800

    Article  CAS  Google Scholar 

  • Church FC, Swaisgood HE, Porter DH, Catignani GL (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci 66:1219–1227

    Article  CAS  Google Scholar 

  • Cocolin L, Aggio D, Manzano M et al (2002) An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int Dairy J 12:407–411

    Article  CAS  Google Scholar 

  • Cousin MA (1982) Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. J Food Prot 45:172–207

    Article  CAS  PubMed  Google Scholar 

  • Datta N, Deeth HC (2001) Age gelation of UHT milk—a review. Food Bioprod Process 79:197–210

    Article  Google Scholar 

  • Datta N, Deeth HC (2003) Diagnosing the cause of proteolysis in UHT milk. LWT Food Sci Technol 36:173–182

    Article  CAS  Google Scholar 

  • De Jonghe V, Coorevits A, Van Hoorde K et al (2011) Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Appl Environ Microbiol 77:460–470

    Article  PubMed  CAS  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta, Mol Cell Res 1694:149–161

    Article  CAS  PubMed  Google Scholar 

  • Desmasures N, Bazin F, Guéguen M (1997) Microbiological composition of raw milk from selected farms in the camembert region of Normandy. J Appl Microbiol 83:53–58

    Article  CAS  PubMed  Google Scholar 

  • Diermayr P, Kroll S, Klostermeyer H (1987) Mechanisms of heat inactivation of a proteinase from Pseudomonas fluorescens biotype I*. J Dairy Res 54:51–60

    Article  CAS  PubMed  Google Scholar 

  • Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufour D, Nicodème M, Perrin C et al (2008) Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. Int J Food Microbiol 125:188–196

    Article  CAS  PubMed  Google Scholar 

  • Engel LS, Hill JM, Caballero AR et al (1998) Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 273:16792–16797

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D, Russo F, Ferrocino I, Villani F (2009) Molecular identification of mesophilic and psychrotrophic bacteria from raw cow’s milk. Food Microbiol 26:228–231

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DJ, Law BA (1986) Proteinases of psychrotrophic bacteria: their production, properties, effects and control. J Dairy Res 53:139–177

    Article  CAS  PubMed  Google Scholar 

  • Fajardo-Lira CE, Nielsen SS (1998) Effect of psychrotrophic microorganisms on the plasmin system in milk. J Dairy Sci 81:901–908

    Article  CAS  PubMed  Google Scholar 

  • Fajardo-Lira C, Oria M, Hayes KD et al (2000) Effect of psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. J Dairy Sci 83:2190–2199

    Article  CAS  PubMed  Google Scholar 

  • FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24:234–237

    Article  CAS  PubMed  Google Scholar 

  • Fricker M, Skånseng B, Rudi K et al (2011) Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. Int J Food Microbiol 145(Suppl):S24–S30

    Article  PubMed  Google Scholar 

  • Frohbieter KA, Ismail B, Nielsen SS et al (2005) Effects of Pseudomonas fluorescens M3/6 bacterial protease on plasmin system and plasminogen activation. J Dairy Sci 88:3392–3401

    Article  CAS  PubMed  Google Scholar 

  • Gebre-Egziabher A, Humbert ES, Blankenagel G (1980) Hydrolysis of milk proteins by microbial enzymes. J Food Prot 9:672–735

    Google Scholar 

  • Glück C (2017) Investigation of heat-stable, microbial peptidases associated to the microbiota of raw milk. Dissertation, University Hohenheim

    Google Scholar 

  • Glück C, Rentschler E, Krewinkel M et al (2016) Thermostability of peptidases secreted by microorganisms associated with raw milk. Int Dairy J 56:186–197

    Article  Google Scholar 

  • Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202

    Article  PubMed  Google Scholar 

  • Hantsis-Zacharov E, Halpern M (2007) Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 73:7162–7168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan AN, Frank JF (2011) Microorganisms assosciated with milk. In: Fuquay JW (ed) Encyclopedia of dairy science, 2nd edn. Academic, Cambridge, pp 447–457

    Chapter  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Hege T, Baumann U (2001) Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189. J Mol Biol 314:187–193

    Article  CAS  PubMed  Google Scholar 

  • Holland IB, Schmitt L, Young J (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22:29–39

    Article  CAS  PubMed  Google Scholar 

  • Humbert G, Guingamp M-F, Kouomegne R et al (1990) Measurement of proteolysis in milk and cheese using trinitrobenzene sulphonic acid and a new dissolving reagent. J Dairy Res 57:143

    Article  CAS  Google Scholar 

  • Humbert G, Guingamp M-F, Linden G et al (2006) The clarifying reagent, or how to make the analysis of milk and dairy products easier. J Dairy Res 73:464–471

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93:4999–5009

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Beacham IR, MacRae IC et al (1992) Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli. Appl Environ Microbiol 58:1776–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    Article  CAS  PubMed  Google Scholar 

  • Kawai E, Idei A, Kumura H et al (1999) The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens no. 33. Biochim Biophys Acta Gene Struct Expr 1446:377–382

    Article  CAS  Google Scholar 

  • Kelly AL, Fox PF (2006) Indigenous enzymes in milk: a synopsis of future research requirements. Int Dairy J 16:707–715

    Article  CAS  Google Scholar 

  • Kelly AL, Datta N, Deeth H (2012) Thermal processing of dairy products. In: Sun D-W (ed) Thermal food processing. CRC Press, Boca Raton, FL, pp 273–306

    Google Scholar 

  • Kinscherf TG, Willis DK (1999) Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-Homoserine lactone biosynthetic gene ahlI. J Bacteriol 181:4133–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlmann KL, Nielsen SS, Steenson LR et al (1991) Production of proteases by psychrotrophic microorganisms. J Dairy Sci 74:3275–3283

    Article  CAS  PubMed  Google Scholar 

  • Krewinkel M, Baur C, Kranz B et al (2016) A sensitive and robust method for direct determination of lipolytic activity in natural milk environment. Food Anal Methods 9(3):646–655

    Article  Google Scholar 

  • Kroll S, Klostermeyer H (1984) Heat inactivation of exogenous proteinases from Pseudomonas fluorescens. Z Lebensm Unters Forsch 179:288–295

    Article  CAS  PubMed  Google Scholar 

  • Kunitz M (1947) Crystalline soybean trypsin inhibitor: II. general propertieS. J Gen Physiol 30:291–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalaouna D, Fochesato S, Sanchez L et al (2012) Phenotypic switching in Pseudomonas brassicacearum involves GacS- and GacA-dependent Rsm small RNAs. Appl Environ Microbiol 78:1658–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapouge K, Schubert M, Allain FHT et al (2008) Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Urbach JM, Wu G et al (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:1–14

    Article  CAS  Google Scholar 

  • Liao CH (1989) Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol 55:1677–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao C-H, McCallus DE (1998) Biochemical and genetic characterization of an extracellular protease from Pseudomonas biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl Environ Microbiol 64:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang H, Griffiths MW (2007) Regulation of alkaline metalloprotease promoter by N-acyl homoserine lactone quorum sensing in Pseudomonas fluorescens. J Appl Microbiol 103:2174–2184

    Article  CAS  PubMed  Google Scholar 

  • Lo R, Stanton-Cook MJ, Beatson SA et al (2015) Draft genome sequence of Pseudomonas fluorescens SRM1, an isolate from spoiled raw milk. Genome Announc 3:e00138–e00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand S, Coudijzer K, Heyndrickx M et al (2008) Selective determination of the heat-resistant proteolytic activity of bacterial origin in raw milk. Int Dairy J 18:514–519

    Article  CAS  Google Scholar 

  • Marchand S, Heylen K, Messens W et al (2009a) Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ Microbiol 11:467–482

    Article  CAS  PubMed  Google Scholar 

  • Marchand S, Vandriesche G, Coorevits A et al (2009b) Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 133:68–77

    Article  CAS  PubMed  Google Scholar 

  • Masoud W, Vogensen FK, Lillevang S et al (2012) The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int J Food Microbiol 153:192–202

    Article  CAS  PubMed  Google Scholar 

  • Matéos A, Guyard-Nicodème M, Baglinière F et al (2015) Proteolysis of milk proteins by AprX, an extracellular protease identified in Pseudomonas LBSA1 isolated from bulk raw milk, and implications for the stability of UHT milk. Int Dairy J 49:78–88

    Article  CAS  Google Scholar 

  • Maunsell B, Adams C, O’Gara F (2006) Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore. Microbiology 152:29–42

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer HJ, Marshall RT, White CH et al (1973) Characterization of a heat-stable protease of Pseudomonas fluorescens P26. Appl Microbiol 25:44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy CN, Woods RG, Beacham IR (2004) Regulation of the aprX-lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ. FEMS Microbiol Lett 241:243–248

    Article  CAS  PubMed  Google Scholar 

  • McPhee JD, Griffiths MW (2011) Pseudomonas spp. In: Fuquay JW (ed) Encyclopedia of dairy science, 2nd edn. Academic, Cambridge, pp 379–383

    Chapter  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–42

    Google Scholar 

  • Meyer J-M, Geoffroy VA, Baida N, et al (2002) Siderophore Typing, a Powerful Tool for the Identification of Fluorescent and Nonfluorescent Pseudomonads. Appl Environ Microbiol 68:2745–2753

    Google Scholar 

  • Mitchell GE, Ewings KN, Bartley JP (2009) Physicochemical properties of proteinases from selected psychrotrophic bacteria. J Dairy Res 53:97–115

    Article  Google Scholar 

  • Miyatake H, Hata Y, Fujii T et al (1995) Crystal structure of the unliganded alkaline protease from Pseudomonas aeruginosa IFO3080 and its conformational changes on ligand binding. J Biochem 118:474–479

    Article  CAS  PubMed  Google Scholar 

  • Moore ERB, Tindall BJ, Martins Dos Santos VAP et al (2006) Nonmedical: Pseudomonas. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes: volume 6: proteobacteria: gamma subclass. Springer, New York, pp 646–703

    Chapter  Google Scholar 

  • Moreland JL, Gramada A, Buzko OV et al (2005) The Molecular Biology Toolkit (MBT): A modular platform for developing molecular visualization applications. BMC Bioinformatics 6:21

    Google Scholar 

  • Mu Z, Du M, Bai Y (2009) Purification and properties of a heat-stable enzyme of Pseudomonas fluorescens Rm12 from raw milk. Eur Food Res Technol 228:725–734

    Article  CAS  Google Scholar 

  • Munsch-Alatossava P, Alatossava T (2006) Phenotypic characterization of raw milk-associated psychrotrophic bacteria. Microbiol Res 161:334–346

    Article  CAS  PubMed  Google Scholar 

  • Ney KH (1971) Voraussage der Bitterkeit von Peptiden aus deren Aminosäurezu-sammensetzung. Z Lebensm Unters Forsch 147:64–68

    Article  CAS  Google Scholar 

  • Nielsen SS (2002) Plasmin system and microbial proteases in milk: characteristics, roles, and relationship. J Agric Food Chem 50:6628–6634

    Article  CAS  PubMed  Google Scholar 

  • Olofsson TC, Ahrné S, Molin G (2007) Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int J Food Microbiol 118:233–240

    Article  CAS  PubMed  Google Scholar 

  • Owusu RK, Doble C (1994) Heat-stability of a proteinase from psychrotrophic Pseudomonas fluorescens P38, chymotrypsin and thermolysin. Food Chem 51:137–142

    Article  CAS  Google Scholar 

  • Peix A, Ramírez-Bahena M-H, Velázquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 9:1132–1147

    Article  PubMed  Google Scholar 

  • Quigley L, O’Sullivan O, Stanton C et al (2013) The complex microbiota of raw milk. FEMS Microbiol Rev 37:664–698

    Article  CAS  PubMed  Google Scholar 

  • Raats D, Offek M, Minz D, Halpern M (2011) Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics. Food Microbiol 28:465–471

    Article  CAS  PubMed  Google Scholar 

  • Rajmohan S, Dodd CER, Waites WM (2002) Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. J Appl Microbiol 93:205–213

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Waller M, Barrett AJ et al (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509

    Article  CAS  PubMed  Google Scholar 

  • Richardson BC (1981) The purification and characterization of a heat-stable protease from Pseudomonas fluorescens B52. N Z J Dairy Sci Technol 16:195–207

    CAS  Google Scholar 

  • Santos MV, Ma Y, Caplan Z et al (2003) Sensory threshold of off-flavors caused by proteolysis and lipolysis in milk. J Dairy Sci 86:1601–1607

    Article  CAS  PubMed  Google Scholar 

  • Schokker EP, van Boekel MAJS (1997a) Kinetic modeling of enzyme inactivation: kinetics of heat inactivation at 90-110 C of extracellular proteinase from Pseudomonas fluorescens 22F. J Agric Food Chem 45:4740–4747

    Article  CAS  Google Scholar 

  • Schokker EP, van Boekel MAJS (1997b) Production, purification and partial characterization of the extracellular proteinase from Pseudomonas fluorescens 22F. Int Dairy J 7:265–271

    Article  CAS  Google Scholar 

  • Schokker EP, van Boekel MAJS (1998a) Effect of protein content on low temperature inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F. J Dairy Res 65:347–352

    Article  CAS  PubMed  Google Scholar 

  • Schokker EP, van Boekel MAJS (1998b) Mechanism and kinetics of inactivation at 40–70°C of the extracellular proteinase from Pseudomonas fluorescens 22F. J Dairy Res 65:261–272

    Article  CAS  PubMed  Google Scholar 

  • Schokker EP, van Boekel MAJS (1999) Kinetics of thermal inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F: influence of pH, calcium, and protein. J Agric Food Chem 47:1681–1686

    Article  CAS  PubMed  Google Scholar 

  • Sørhaug T, Stepaniak L (1997) Psychrotrophs and their enzymes in milk and dairy products: quality aspects. Trends Food Sci Technol 8:35–41

    Article  Google Scholar 

  • Stead D (1987) Assay of proteinases of psychrotrophic bacteria in milk using hide powder azure and a simple procedure for clarification of milk. J Dairy Res 54:295–302

    Article  CAS  PubMed  Google Scholar 

  • Stepaniak L, Fox PF (1983) Thermal stability of an extracellular proteinase from Pseudomonas fluorescens AFT 36. J Dairy Res 50:171–184

    Article  CAS  PubMed  Google Scholar 

  • Stepaniak L, Fox PF (1985) Isolation and characterization of heat stable proteinases from Pseudomonas isolate AFT 21. J Dairy Res 52:77–89

    Article  CAS  PubMed  Google Scholar 

  • Stepaniak L, Fox PF, Daly C (1982) Isolation and general characterization of a heat-stable proteinase from Pseudomonas fluorescens AFT 36. Biochim Biophys Acta Gen Subj 717:376–383

    Article  CAS  Google Scholar 

  • Stoeckel M, Lidolt M, Achberger V et al (2016a) Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dairy J 59:20–28

    Article  CAS  Google Scholar 

  • Stoeckel M, Lidolt M, Stressler T et al (2016b) Heat stability of indigenous milk plasmin and proteases from Pseudomonas: a challenge in the production of ultra-high temperature milk products. Int Dairy J 61:250–261

    Article  CAS  Google Scholar 

  • Teh KH, Flint S, Palmer J et al (2011) Thermo-resistant enzyme-producing bacteria isolated from the internal surfaces of raw milk tankers. Int Dairy J 21:742–747

    Article  CAS  Google Scholar 

  • Teh KH, Flint S, Palmer J et al (2012) Proteolysis produced within biofilms of bacterial isolates from raw milk tankers. Int J Food Microbiol 157:28–34

    Article  CAS  PubMed  Google Scholar 

  • Tielen P, Rosenau F, Wilhelm S et al (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology 156:2239–2252

    Article  CAS  PubMed  Google Scholar 

  • Twining SS (1984) Fluorescein isothiocyanate-labeled casein assay for proteolytic enzymes. Anal Biochem 143:30–34

    Article  CAS  PubMed  Google Scholar 

  • Vercet A, Lopez P, Burgos J (1997) Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. J Dairy Sci 80:29–36

    Article  CAS  Google Scholar 

  • Verdier-Metz I, Gagne G, Bornes S, et al (2012) Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol 78:326–33

    Google Scholar 

  • von Neubeck M, Baur C, Krewinkel M et al (2015) Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 211:57–65

    Article  CAS  Google Scholar 

  • Walstra P, Wouters JTM, Geurst TM (2006) Dairy science and technology, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864

    Article  CAS  PubMed  Google Scholar 

  • Winsor GL, Griffiths EJ, Lo R et al (2015) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods RG, Burger M, Beven C-A et al (2001) The aprX-lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production. Microbiology 147:345–354

    Article  CAS  PubMed  Google Scholar 

  • Workentine ML, Chang L, Ceri H et al (2009) The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol Lett 292:50–56

    Article  CAS  PubMed  Google Scholar 

  • Wouters JT, Ayad EH, Hugenholtz J et al (2002) Microbes from raw milk for fermented dairy products. Int Dairy J 12:91–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timo Stressler or Lutz Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glück, C., Stressler, T., Fischer, L. (2021). Heat-Stable Microbial Peptidases Associated with the Microbiota of Raw Milk. In: Kelly, A.L., Larsen, L.B. (eds) Agents of Change. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-55482-8_11

Download citation

Publish with us

Policies and ethics