Skip to main content

Sugar Transport Across Epithelia

  • Chapter
  • First Online:
Studies of Epithelial Transporters and Ion Channels

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The transport of d-glucose, d-galactose, and d-fructose across epithelial cells is mediated by SGLTs, GLUT5, and GLUT2 in the apical and/or basolateral membrane. The SGLTs (sodium–glucose cotransporters) are responsible for active glucose transport, while the GLUTs (facilitative glucose transporters) are responsible for passive glucose and fructose transport. The structure and function of each of these transport proteins are summarized, and then we highlight the similarities and differences between these two classes of membrane transporters. We next discuss their roles in sugar absorption in the intestine and glucose reabsorption from the glomerular filtrate in the kidney. Reference is made to genetic disorders of glucose transport in the intestine, Glucose–Galactose Malabsorption, and in the kidney, Familial Renal Glucosuria, and the Fanconi–Bickel syndrome, and the use of specific SGLT2 inhibitors to treat Type II Diabetes Mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson J, Wright EM (2009) Structure and function of Na+-symporters with inverted repeats. Curr Opin Struct Biol 19:425–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adelman JL, Ghezzi C, Bisignano P, Loo DD, Choe S, Abramson J, Rosenberg JM, Wright EM, Grabe M (2016) Stochastic steps in secondary active transport. Proc Natl Acad Sci U S A 113:E3960–E3966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett JE, Holman GD, Munday KA (1973) Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J 131:211–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisignano P, Ghezzi C, Jo H, Polizzi NF, Althoff T, Kalyanaraman C, Friemann R, Jacobson MP, Wright EM, Grabe M (2018) Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat Commun 7:5245

    Google Scholar 

  • Carruthers A, Helgerson AL (1991) Inhibition of sugar transport produced by ligands binding at opposite sides of the membrane. Evidence for simultaneous occupation of the carrier by maltose and cytochalasin B. iochemistry 16:3907–3915

    Google Scholar 

  • Chasis H, Jolliffe N, Smith HW (1933) The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J Clin Invest 12:1083–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coady MJ, Wallendorff B, Lapointe JY (2017) Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na+/glucose cotransporter. Am J Physiol Renal Physiol 313:F467–F474

    CAS  PubMed  Google Scholar 

  • Cramer SC, Pardridge WM, Hirayama BA, Wright EM (1992) Colocalization of GLUT2 glucose transporter, sodium/glucose cotransporter, and gamma-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry. Diabetes 41:766–770

    CAS  PubMed  Google Scholar 

  • Crane RK (1977) The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol 78:99–159

    CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system, http:/www.pymol.org

  • Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    CAS  PubMed  Google Scholar 

  • Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, Ren W, Hirata K, Yamamoto M, Fan S, Yan N (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396

    CAS  PubMed  Google Scholar 

  • Eskandari S, Wright EM, Loo DD (2005) Kinetics of the reverse mode of the Na+/glucose cotransporter. J Membr Biol 204:23–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraris RP, Choe JY, Patel CR (2018) Intestinal absorption of fructose. Annu Rev Nutrition 38:41–67

    CAS  PubMed  Google Scholar 

  • Gallo LA, Wright EM, Vallon V (2015) Probing SGLT2 is a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78–89

    CAS  PubMed  Google Scholar 

  • Ghezzi C, Hirayama BA, Gorraitz E, Loo DD, Liang Y, Wright EM (2014) SGLT2 inhibitors act from the extracellular surface of the cell membrane. Physiol Rep 2(6):e12058

    PubMed  PubMed Central  Google Scholar 

  • Ghezzi C, Yu AS, Hirayama BA, Kepe V, Liu J, Scafoglio C, Powell DR, Huang SC, Satyamurthy N, Barrio JR, Wright EM (2017) Dapagliflozin binds specifically to sodium-glucose Cotransporter 2 in the proximal renal tubule. J Am Soc Nephrol 28:802–810

    CAS  PubMed  Google Scholar 

  • Ghezzi C, Loo DDF, Wright EM (2018) Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61:2087–2097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorraitz E, Hirayama BA, Paz A, Wright EM, Loo DDF (2017) Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1. Proc Natl Acad Sci U S A 114:E9980–E9988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem J 295:329–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330:379–381

    CAS  PubMed  Google Scholar 

  • Hediger MA, Turk E, Wright EM (1989) Homology of the human intestinal Na+/glucose and the Escherichia coli Na+/proline cotransporter. Proc Natl Acad Sci U S A 86:5748–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfer U, Nelson K, Perrotto J, Isselbacher KJ (1973) Glucose transport in isolated brush border membrane from rat small intestine. J Biol Chem 248:25–32

    CAS  PubMed  Google Scholar 

  • Hresko RC, Kruse M, Strube M, Mueckler M (1994) Topology of the Glut1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem 269:20482–20488

    CAS  PubMed  Google Scholar 

  • Hummel CS, Lu C, Loo DD, Hirayama BA, Voss AA, Wright EM (2011) Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2 am. J Physiol cell Physiol 300:C14–C21

    CAS  Google Scholar 

  • Hummel CS, Lu C, Liu J, Ghezzi C, Hirayama BA, Loo DD, Kepe V, Barrio JR, Wright EM (2012) Structural selectivity of human SGLT inhibitors. Am J Physiol Cell Physiol 302:C373–C382

    CAS  PubMed  Google Scholar 

  • Jiang X, Loo DD, Hirayama BA, Wright EM (2012) The importance of being aromatic: π interactions in sodium symporters. Biochemistry 51:9480–9487

    CAS  PubMed  Google Scholar 

  • Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol 18:247–256

    CAS  PubMed  Google Scholar 

  • Kaback HR, Guan L (2019) It takes two to tango: the dance of the permease. J Gen Physiol 151:878–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor K, Finer-Moore JS, Pedersen BP, Caboni L, Waight A, Hillig RC, Bringmann P, Heisler I, Muller T, Siebeneicher H, Stroud RM (2016) Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc Natl Acad Sci U S A 113:4711–4716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara M, Hinkle PC (1977) Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem 252:7384–7390

    CAS  PubMed  Google Scholar 

  • Kimmich GA, Randles J (1984) Sodium-sugar coupling stoichiometry in chick intestinal cells. Am J Phys 247:C74–C82

    CAS  Google Scholar 

  • Krug SM (2017) Contribution of the tricellular tight junction to paracellular permeability in leaky and tight epithelia. Ann N Y Acad Sci 1397:219–230

    CAS  PubMed  Google Scholar 

  • Lloyd K, Ojelabi OA, De Zutter JK, Carruthers A (2017) Reconciling contradictory findings: glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J Biol Chem 292:21035–21046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo DD, Hazama A, Supplisson S, Turk E, Wright EM (1993) Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci U S A 90:5767–5771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo DD, Wright EM, Zeuthen T (2002) Water pumps. J Physiol 542:53–60

    Google Scholar 

  • Loo DD, Hirayama BA, Cha A, Bezanilla F, Wright EM (2005) Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. J Gen Physiol 125:13–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo DD, Hirayama BA, Karakossian MH, Meinild AK, Wright EM (2006) Conformational dynamics of hSGLT1 during Na+/glucose cotransport. J Gen Physiol 128:701–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loo DD, Jiang X, Gorraitz E, Hirayama BA, Wright EM (2013) Functional identification and characterization of sodium binding sites in Na symporters. Proc Natl Acad Sci U S A 110:E4557–E4566

    PubMed  PubMed Central  Google Scholar 

  • Mueckler M, Makepeace C (2009) Model of the exofacial substrate-binding site and helical folding of the human GLUT1 glucose transporter based on scanning mutagenesis. Biochemistry 48:5934–5942

    CAS  PubMed  Google Scholar 

  • Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34:121–138

    CAS  Google Scholar 

  • Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF (1985) Sequence and structure of a human glucose transporter. Science 229:941–945

    CAS  PubMed  Google Scholar 

  • Naftalin J (2018) A critique of the alternating access transporter model of uniport glucose transport. Biophys Rep 4:287–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y, Abe H, Nakada-Nakada Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H, Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, Drew D (2015) Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 526:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parent L, Supplisson S, Loo DD, Wright EM (1992a) Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol 125:49–62

    CAS  PubMed  Google Scholar 

  • Parent L, Supplisson S, Loo DD, Wright EM (1992b) Electrogenic properties of the cloned Na+/glucose cotransporter: II A transport model under nonrapid equilibrium conditions. J Membr Biol 125:63–79

    CAS  PubMed  Google Scholar 

  • Quick M, Wright EM (2002) Employing Escherichia coli to functionally express, purify, and characterize a human transporter. Proc Natl Acad Sci U S A 99:8597–8601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieg T, Vallon V (2018) Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61:2079–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306:F188–F193

    CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Hirayama BA, Loo DD, Chaptal V, Abramson J, Wright EM (2012) Bridging the gap between structure and kinetics of human SGLT1. Am J Physiol Cell Physiol 302:C1293–C1305

    CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Hirayama BA, Ghezzi C, Liu J, Huang SC, Kepe V, Koepsell H, Yu A, Powell DR, Thorens B, Wright EM, Barrio JR (2016) Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice. J Physiol 594:4425–4438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sala-Rabanal M, Ghezzi C, Hirayama BA, Kepe V, Liu J, Barrio JR, Wright EM (2018) Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 596:2473–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santer R, Calado J (2010) Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin J Am Soc Nephrol 5:133–141

    CAS  PubMed  Google Scholar 

  • Santer R, Hillebrand G, Steinmann B, Schaub J (2003) Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans. Gastroenterology 124:34–39

    Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50:637–718

    CAS  PubMed  Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Academic Press, New York

    Google Scholar 

  • Stümpel F, Burcelin R, Jungermann K, Thorens B (2001) Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. Proc Natl Acad Sci U S A 98:11330–11335

    PubMed  PubMed Central  Google Scholar 

  • Thorens B, Mueckler M (2010) Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298:E141–E145

    Google Scholar 

  • Uldry M, Thorens B (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 447:480–489

    CAS  PubMed  Google Scholar 

  • Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radović N, Jadrijević S, Aleksic I, Walles T, Sauvant C, Sabolić I, Koepsell H (2015) Localizations of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch 467:1881–1898

    CAS  PubMed  Google Scholar 

  • Watanabe A, Choe S, Chaptal V, Rosenberg JM, Wright EM, Grabe M, Abramson J (2010) The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468:988–991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells RG, Pajor AM, Kanai Y, Turk E, Wright EM, Hediger MA (1992) Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am J Phys 263:F459–F465

    CAS  Google Scholar 

  • Widdas WF (1953) Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol 118:23–39

    Google Scholar 

  • Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91:733–794

    CAS  PubMed  Google Scholar 

  • Wright EM, Barrio JR, Hirayama BA, Kepe V (2014) Tracers for monitoring the activity of Sodium/Glucose cotransporters in health and disease. United States Patent US 8,845,99 B2

    Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  • Yan N (2015) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44:257–283

    CAS  PubMed  Google Scholar 

  • Zampighi GA, Kreman M, Boorer KJ, Loo DD, Bezanilla F, Chandy G, Hall JE, Wright EM (1995) A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol 148:65–78

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DD (2016) Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 113:E6887–E6894

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is a very personal view of the current state of sugar transport where we have emphasized the advances from the Wright laboratory over the past 30 years. We apologize in advance for not fully recognizing the valuable contributions of other researchers around the world. We do acknowledge the many talented students, post-doctoral fellows, and collaborators who have made our advances possible, and these can be identified in our citations. We are particularly grateful for the funding from the NIH and other agencies that made our work possible. Finally, we acknowledge our debt to Wendy Ravenhill for drawing all the figures in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest M. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loo, D.D.F., Wright, E.M. (2020). Sugar Transport Across Epithelia. In: Hamilton, K.L., Devor, D.C. (eds) Studies of Epithelial Transporters and Ion Channels. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55454-5_6

Download citation

Publish with us

Policies and ethics