Skip to main content

Inwardly Rectifying K+ Channel 4.1 Regulates Renal K+ Excretion in the Aldosterone-Sensitive Distal Nephron

  • Chapter
  • First Online:
Studies of Epithelial Transporters and Ion Channels

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 426 Accesses

Abstract

The inwardly rectifying potassium channel 4.1 (Kir4.1, KCNJ10) in the aldosterone-sensitive distal nephron (ASDN) plays a key role in the regulation of Na+ and K+ transport by sensing the dietary K+ and Na+ intake. The K+ channel is also the target for angiotensin II, bradykinin, and norepinephrine which are known to regulate the renal Na+ and K+ transport in the ASDN. Since Kir4.1 plays a critical role in the regulation of renal K+ excretion and in maintaining K+ homeostasis, the main focus of this chapter is to review the role of Kir4.1 in the regulation of renal K+ excretion. Finally, because Kir4.1/Kir5.1 (encoded by KCNJ16) heterotetramer is a more physiologically relevant form of the K+ channel in the ASDN than Kir4.1 homotetramer, the role of the Kir4.1/Kir5.1 heterotetramer in the regulation of membrane transport is discussed in the chapter together with Kir4.1 homotetramer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azuma KK, Hensley CB, Putnam DS, McDonough AA (1991) Hypokalemia decreases Na+-K+-ATPase alpha2- but not alpha1-isoform abundance in heart, muscle, and brain. Am J Physiol Cell Physiol 260:C958–C964

    CAS  Google Scholar 

  • Bandulik S, Schmidt K, Bockenhauer D, Zdebik AA, Humberg E, Kleta R, Warth R, Reichold M (2011) The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K channel. Pflugers Arch 461:423–435

    CAS  PubMed  Google Scholar 

  • Bastl C, Hayslett JP, Binder HJ (1977) Increased large intestinal secretion of potassium in renal insufficiency. Kidney Int 12:9–16

    CAS  PubMed  Google Scholar 

  • Bia MJ, DeFronzo RA (1981) Extrarenal potassium homeostasis. Am J Phys 240:F257–F268

    CAS  Google Scholar 

  • Biagi B, Kubota T, Sohtell M, Giebisch G (1981a) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Phys 240:F200–F210

    CAS  Google Scholar 

  • Biagi B, Sohtell M, Giebisch G (1981b) Intracellular potassium activity in the rabbit proximal straight tubule. Am J Phys 241:F677–F686

    CAS  Google Scholar 

  • Bleich M, Schlatter E, Greger R (1990) The luminal K+ channel of the thick ascending limb of Henle’s loop. Pflugers Arch 415:449–460

    CAS  PubMed  Google Scholar 

  • Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Phys 250:F680–F689

    CAS  Google Scholar 

  • Bond CT, Pessia M, Xia XM, Lagrutta A, Kavanaugh MP, Adelman JP (1994) Cloning and expression of a family of inward rectifier potassium channels. Receptors Channels 2:183–191

    CAS  PubMed  Google Scholar 

  • Borensztein P, Leviel F, Froissart M, Houillier P, Poggioli J, Marty E, Bichara M, Paillard M (1991) Mechanisms of H+/HCO3− transport in the medullary thick ascending limb of rat kidney. Kidney Int Suppl 33:S43–S46

    CAS  PubMed  Google Scholar 

  • Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TRP, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bredt DS, Wang TL, Cohen NA, Guggino WB, Snyder SH (1995) Cloning and expression of two brain-specific inwardly rectifying potassium channels. Proc Natl Acad Sci USA 92:6753–6757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casamassima M, D'Adamo MC, Pessia M, Tucker SJ (2003) Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J Biol Chem 278:43533–43540

    CAS  PubMed  Google Scholar 

  • Castaeda-Bueno M, Cervantes-Prez LG, Vzquez N, Uribe N, Kantesaria S, Morla L, Bobadilla NA, Doucet A, Alessi DR, Gamba G (2012) Activation of the renal Na:Cl cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA 109:7929–7934

    Google Scholar 

  • Castaneda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vazquez N, Moreno E, Gamba G (2014) Modulation of NCC activity by low and high K+ intake: insights into the signaling pathways involved. Am J Physiol Renal Physiol 306:F1507–F1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha SK, Huang C, Ding Y, Qi X, Huang CL, Miller RT (2011) Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K+ channel Kir4.1. J Biol Chem 286:1828–1835

    CAS  PubMed  Google Scholar 

  • Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S (2008) Dietary salt regulates the phosphorylation of OSR1//SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 74:1403–1409

    CAS  PubMed  Google Scholar 

  • Choi CSC, Thompson CB, Leong PKK, McDonough AA, Youn JH (2001) Short-term K+ deprivation provokes insulin resistance of cellular K+ uptake revealed with the K+ clamp. Am J Physiol Renal Physiol 280:F95–F102

    CAS  PubMed  Google Scholar 

  • Codina J, Pressley TA, DuBose TD Jr (1997) Effect of chronic hypokalemia on H-K-ATPase in rat colon. Am J Phys 272:F22–F30

    CAS  Google Scholar 

  • Cuevas CA, Su XT, Wang MX, Terker AS, Lin DH, McCormick JA, Yang C-L, Ellison DH, Wang WH (2017) Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol 28:1814–1825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derst C, Karschin C, Wischmeyer E, Hirsch JR, Preisig-Muller R, Rajan S, Engel H, Grzeschik KH, Daut J, Karschin A (2001) Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits. FEBS Lett 491:305–311

    CAS  PubMed  Google Scholar 

  • Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279:37271–37281

    CAS  PubMed  Google Scholar 

  • Duan X, Gu L, Xiao Y, Gao Z, Wu P, Zhang Y, Meng X, Wang J, Zhang D, Lin D, Wang W, Gu R (2019) Norepinephrine-induced stimulation of Kir4.1/Kir5.1 is required for the activation of NaCl transporter in distal convoluted tubule. Hypertension 73:112–120

    CAS  PubMed  Google Scholar 

  • Ellison DH, Terker AS, Gamba G (2015) Potassium and its discontents: new insight, new treatments. J Am Soc Nephrol 27:981–989

    PubMed  PubMed Central  Google Scholar 

  • Ferre S, Hoenderop JJ, Bindels RJ (2011) Role of the distal convoluted tubule in renal Mg2+ handling: molecular lessons from inherited hypomagnesemia. Magnes Res 24:s101–s108

    CAS  PubMed  Google Scholar 

  • Fisher KA, Binder HJ, Hayslett JP (1976) Potassium secretion by colonic mucosal cells after potassium adaptation. Am J Phys 231:987–994

    CAS  Google Scholar 

  • Foss JD, Fink GD, Osborn JW (2013) Reversal of genetic salt-sensitive hypertension by targeted sympathetic ablation. Hypertension 61:806–811

    CAS  PubMed  Google Scholar 

  • Frindt G, Palmer LG (2009) K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms. Am J Physiol Renal Physiol 297:F389–F396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fromter E (1974) Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch 351:69–83

    CAS  PubMed  Google Scholar 

  • Fujita A, Horio Y, Higashi K, Mouri T, Hata F, Takeguchi N, Kurachi Y (2002) Specific localization of an inwardly rectifying K+ channel, Kir4.1, at the apical membrane of rat gastric parietal cells; its possible involvement in K+ recycling for the H+-K+-pump. J Physiol 540:85–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamba G (1999) Molecular biology of distal nephron sodium transport mechanisms. Kidney Int 56:1606–1622

    CAS  PubMed  Google Scholar 

  • Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  • Giebisch G (1998) Renal potassium transport:mechanisms and regulation. Am J Phys 274:F817–F833

    CAS  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65:760–797

    CAS  PubMed  Google Scholar 

  • Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loopof rabbit kidney. Pflugers Arch 396:325–334

    CAS  PubMed  Google Scholar 

  • Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 396:308–314

    CAS  PubMed  Google Scholar 

  • Grimm PR, Coleman R, Delpire E, Welling PA (2017) Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J Am Soc Nephrol 28:2555–2563

    Google Scholar 

  • Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Phys 246:F745–F756

    CAS  Google Scholar 

  • Houillier P (2014) Mechanisms and regulation of renal magnesium transport. Annu Rev Physiol 76:411–430

    PubMed  Google Scholar 

  • Huang DY, Osswald H, Vallon V (2000) Sodium reabsorption in thic ascending limb of Henle’s loop: effect of potassium channel blockade in vivo. Br J Pharmacol 130:1255–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF, Miller RT (2007) Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am J Physiol Renal Physiol 292:F1073–F1081

    CAS  PubMed  Google Scholar 

  • Jin L, Chao L, Chao J (1999) Potassium supplement upregulates the expression of renal kallikrein and bradykinin B2 receptor in SHR. Am J Physiol Renal Physiol 276:F476–F484

    CAS  Google Scholar 

  • Kaufman JS, Hamburger RJ (1985) Passive potassium transport in the proximal convoluted tubule. Am J Phys 248:F228–F232

    CAS  Google Scholar 

  • Kibble JD, Wareing M, Wilson RW, Green R (1995) Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat. Am J Phys 268:F778–F783

    CAS  Google Scholar 

  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 Subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kompatscher A, de Baaij JHF, Aboudehen K, Hoefnagels APWM, Igarashi P, Bindels RJM, Veenstra GJC, Hoenderop JGJ (2017) Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1+¦ drives autosomal dominant tubulointerstitial kidney disease. Kidney Int 92:1145–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konstas AA, Korbmacher C, Tucker SJ (2003) Identification of domains which control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels. Am J Physiol Cell Physiol 284:C910–C917

    CAS  PubMed  Google Scholar 

  • Kucheryavykh YV, Pearson WL, Kurata HT, Eaton MJ, Skatchkov SN, Nichols CG (2007) Polyamine permeation and rectification of Kir4.1 channels. Channels 1:172–178

    PubMed  Google Scholar 

  • Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M (2008) Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 294:F1398–F1407

    CAS  PubMed  Google Scholar 

  • Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP (2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 38:1124–1132

    CAS  PubMed  Google Scholar 

  • Leviel F, Borensztein P, Houillier P, Paillard M, Bichara M (1992) Electroneutral K+/HCO3 − cotransport in cells of medullary thick ascending limb of rat kidney. J Clin Invest 90:869–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch of the [Ca2+] in response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285:F998–F1012

    CAS  PubMed  Google Scholar 

  • Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L, Ko B, Hoover RS, He B, Mu S (2017) CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat Commun 8:14037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, International Consortium for Blood Pressure (ICBP), Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott JJ, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44:456–460

    CAS  PubMed  Google Scholar 

  • Lourdel S, Paulais M, Cluzeaud F, Bens M, Tanemoto M, Kurachi Y, Vandewalle A, Teulon J (2002) An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels. J Physiol 538:391–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Wang WH (1996) Nitric oxide regulates the low-conductance K+ channel in basolateral membrane of cortical collecting duct. Am J Phys 270:C1336–C1342

    CAS  Google Scholar 

  • Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC (2002) Absence of small-conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice. J Biol Chem 277:37881–37887

    CAS  PubMed  Google Scholar 

  • Malik S, Lambert E, Zhang J, Wang T, Clark HL, Cypress M, Goldman BI, Porter GA, Pena S, Nino W, Gray DA (2018) Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am J Physiol Renal Physiol 315:F1271–F1282

    PubMed  PubMed Central  Google Scholar 

  • McCormick JA, Mutig K, Nelson JH, Saritas T, Hoorn EJ, Yang C-L, Rogers S, Curry J, Delpire E, Bachmann S, Ellison DH (2011) A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab 14:352–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, Yarbrough B, Meermeier NP, Park HJ, McCully B, West M, Borschewski A, Himmerkus N, Bleich M, Bachmann S, Mutig K, Argaiz ER, Gamba G, Singer JD, Ellison DH (2014) Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. J Clin Invest 124:4723–4736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Gonzalez MP, Kucheryavykh YV, Zayas-Santiago A, Velez-Carrasco W, Maldonado-Martinez G, Cubano LA, Nichols CG, Skatchkov SN, Eaton MJ (2016) Novel KCNJ10 gene variations compromise function of inwardly rectifying potassium channel 4.1. J Biol Chem 291:7716–7726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR (2006) Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291:F663–F669

    CAS  PubMed  Google Scholar 

  • Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F, Marumo T, Yatomi Y, Geller DS, Tanaka H, Fujita T (2011) Epigenetic modulation of the renal β-adrenergic-WNK4 pathway in salt-sensitive hypertension. Nat Med 17:573–580

    CAS  PubMed  Google Scholar 

  • Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM (2005) Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct. Am J Physiol Renal Physiol 289:F922–F932

    CAS  PubMed  Google Scholar 

  • Nesterov V, Dahlmann A, Krueger BK, Bertog M, Loffing J, Korbmacher C (2012) Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 303:F1289–F1299

    CAS  PubMed  Google Scholar 

  • Neusch C, Rozengurt N, Jacobs RE, Lester HA, Kofuji P (2001) Kir4.1 Potassium channel subunit Is crucial for oligodendrocyte development and in vivo myelination. J Neurosci 21:5429–5438

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil RG (1981) Potassium secretion by the cortical collecting tubule. Fed Proc 40:2403–2407

    PubMed  Google Scholar 

  • O’Neil RG, Hayhurst AR (1985) Functional differentiation of cell types of cortical collecting duct. Am J Phys 248:449–453

    Google Scholar 

  • Obermuller N, Bernstein P, Velazquez H, Reilly R, Moser D, Ellison DH, Bachmann S (1995) Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am J Phys 269:F900–F910

    CAS  Google Scholar 

  • Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A (2017) Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2:pil 92331

    Google Scholar 

  • Parrock S, Hussain S, Issler N, Differ AM, Lench N, Guarino S, Oosterveld MJS, Keijzer-Veen M, Brilstra E, van Wieringen H, Konijnenberg AY, Amin-Rasip S, Dumitriu S, Klootwijk E, Knoers N, Bockenhauer D, Kleta R, Zdebik AA (2013) KCNJ10 mutations display differential sensitivity to heteromerisation with KCNJ16. Nephron Physiol 123:7–14

    PubMed  Google Scholar 

  • Pathare G, Hoenderop JGJ, Bindels RJM, San-Cristobal P (2013) A molecular update on pseudohypoaldosteronism type II. Am J Physiol Renal Physiol 305:F1513–F1520

    CAS  PubMed  Google Scholar 

  • Paulais M, Lachheb S, Teulon J (2006) A Na+ and Cl-activated K+ Channel in the thick ascending limb of mouse kidney. J Gen Physiol 127:205–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulais M, Bloch-Faure M, Picard N, Jacques T, Ramakrishnan SK, Keck M, Sohet F, Eladari D, Houillier P, Sp L, Teulon J, Tucker SJ (2011) Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome. Proc Natl Acad Sci USA 108:10361–10366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP (1996) Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J 15:2980–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pessia M, Imbrici P, D’Adamo MC, Salvatore L, Tucker SJ (2001) Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1. J Physiol 532:359–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piala AT, Moon TM, Akella R, He HX, Cobb MH, Goldsmith EJ (2014) Chloride sensing by WNK1 involves inhibition of autophosphosphorylation. Sci Signal 7:ra41

    PubMed  PubMed Central  Google Scholar 

  • Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, Hulton SA, Witzgall R, Ben Zeev B, Howie AJ, Kleta R, Bockenhauer D, Warth R (2010) KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA 107:14490–14495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA (2014) Increasing plasma K+ by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Renal Physiol 306:F1059–F1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaek LL, Kortenoeven MLA, Aroankins TS, Fenton RA (2014) Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. J Biol Chem 289:13347–13361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C (2003) Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 177:71–80

    CAS  PubMed  Google Scholar 

  • Sala-Rabanal M, Kucheryavykh LY, Skatchkov SN, Eaton MJ, Nichols CG (2010) Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10). J Biol Chem 285:36040–36048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom SC, O'Neil RG (1986) Effects of mineralocorticoids on transport properties of the cortical collecting duct basolateral membrane. Am J Phys 251:743–757

    Google Scholar 

  • Schafer JA, Troutman SL, Schlatter E (1990) Vasopressin and mineralocorticoid increase apical membrane driving force for K+ secretion in rat CCD. Am J Phys 258:F199–F210

    CAS  Google Scholar 

  • Schmitt R, Ellison DH, Farman N, Rossier BC, Reilly RF, Reeves WB, Oberbaumer I, Tapp R, Bachmann S (1999) Developmental expression of sodium entry pathways in rat nephron. Am J Phys 276:F367–F381

    CAS  Google Scholar 

  • Schnermann J, Steipe B, Briggs JP (1987) In situ studies of distal convoluted tubule in rat. II. K secretion. Am J Phys 252:970–976

    Google Scholar 

  • Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP (2013) Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA 110:7838–7843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirley DG, Walter SJ, Folkerd EJ, Unwin RJ, Bailey MA (1998) Transepithelial electrochemical gradients in the proximal convoluted tubule during potassium depletion the rat. J Physiol 513:551–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shuck ME, Piser TM, Block JH, Slightom JL, Lee KS, Bienkowski MJ (1997) Cloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3). J Biol Chem 272:586–593

    CAS  PubMed  Google Scholar 

  • Simon DB, Karet FE, Rodriguez J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (1996a) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K channel, ROMK. Nat Genet 14:152–156

    CAS  PubMed  Google Scholar 

  • Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, Vaara I, Iwata F, Cushner HM, Koolen M, Gainza F, Gitelman HJ, Lifton RP (1996b) Gitelman’s variant of Bartter’s syndrome inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotranspoter. Nat Genet 12:24–30

    CAS  PubMed  Google Scholar 

  • Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83:811–824

    CAS  PubMed  Google Scholar 

  • Su XT, Wang WH (2016) The expression, regulation, and function of Kir4.1 (Kcnj10) in the ammalian kidney. Am J Physiol Renal Physiol 311:F12–F15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su XT, Zhang C, Wang L, Gu R, Lin DH, Wang WH (2016) Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct. Am J Physiol Renal Physiol 310:F985–F993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su XT, Ellison DH, Wang WH (2019) Kir4.1/Kir5.1 in the DCT plays a role in the regulation of renal K+ excretion. Am J Physiol Renal Physiol 316:F582–F586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Katori M, Fujita T, Kumagai Y, Majima M (2000) Involvement of the renal kallikrein-kinin system in K(+)-induced diuresis and natriuresis in anesthetized rats. Eur J Pharmacol 399:223–227

    CAS  PubMed  Google Scholar 

  • Takumi T, Ishii T, Horio Y, Morishige K, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakanishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channel expressed predominantly in glial cells. J Biol Chem 270:16339–16346

    CAS  PubMed  Google Scholar 

  • Tanemoto M, Kittaka N, Inanobe A, Kurachi Y (2000) In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J Physiol 525:587–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanemoto M, Abe T, Onogawa T, Ito S (2004) PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules. Am J Physiol Renal Physiol 287:F1148–F1153

    CAS  PubMed  Google Scholar 

  • Tanemoto M, Abe T, Ito S (2005) PDZ-binding and Di-hydrophobic motifs regulate distribution of Kir4.1 channels in renal cells. J Am Soc Nephrol 16:2608–2614

    CAS  PubMed  Google Scholar 

  • Tanemoto M, Toyohara T, Abe T, Ito S (2008) MAGI-1a functions as a scaffolding protein for the distal renal tubular basolateral K+ channels. J Biol Chem 283:12241–12247

    CAS  PubMed  Google Scholar 

  • Tanemoto M, Abe T, Uchida S, Kawahara K (2014) Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett 588:899–905

    CAS  PubMed  Google Scholar 

  • Taniguchi J, Guggino WB (1989) Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Phys 257(Renal 26):F347–F352

    CAS  Google Scholar 

  • Terker AS, Yang CL, McCormick JA, Meermeier NP, Rogers SL, Grossmann S, Trompf K, Delpire E, Loffing J, Ellison DH (2014) Sympathetic stimulation of thiazide-sensitive sodium chloride cotransport in the generation of salt-sensitive hypertension. Hypertension 64:178–184

    CAS  PubMed  Google Scholar 

  • Terker A-S, Zhang C, McCormick J-A, Lazelle R-A, Zhang C, Meermeier N-P, Siler D-A, Park H-J, Fu Y, Cohen D-M, Weinstein A-M, Wang WH, Yang CL, Ellison D-H (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21:39–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terker AS, Zhang C, Erspamer KJ, Gamba G, Yang CL, Ellison DH (2016) Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 89:127–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terker AS, Ferdaus MZ, Cornelius R, Erspamer KJ, Su XT, Miller L, McCormick JA, Wang W-H, Gamba G, Yang C-L, Ellison DH (2018) With no lysine kinase 4 modulates sodium potassium 2 chloride cotransporter activity in vivo. Am J Physiol Renal Physiol 315:F781–F790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thastrup J, Rafiqi F, Vitari A, Pozo-Guisado E, Deak M, Mehellou Y, Alessi D (2012) SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem J 441:325–337

    CAS  PubMed  Google Scholar 

  • Thompson CB, McDonough AA (1996) Skeletal muscle Na,K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity. J Biol Chem 271:32653–32658

    CAS  PubMed  Google Scholar 

  • Tomilin VN, Zaika O, Subramanya AR, Pochynyuk O (2018) Dietary K+ and Cl− independently regulate basolateral conductance in principal and intercalated cells of the collecting duct. Pflugers Archiv Eur J Physiol 470:339–353

    CAS  Google Scholar 

  • Tsuchiya K, Wang W, Giebisch G, Welling PA (1992) ATP is a coupling modulator of parallel Na,K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89:6418–6422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker SJ, Imbrici P, Salvatore L, D’Adamo MC, Pessia M (2000) pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J Biol Chem 275:16404–16407

    CAS  PubMed  Google Scholar 

  • Unwin R, Capasso G, Giebisch G (1994) Potassium and sodium transport along he loop of Henle: effects of altered dietary potassium intake. Kidney Int 46:1092–1099

    CAS  PubMed  Google Scholar 

  • Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Voelker H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011

    CAS  PubMed  Google Scholar 

  • van der Lubbe N, Moes AD, Rosenbaek LL, Schoep S, Meima ME, Danser AHJ, Fenton RA, Zietse R, Hoorn EJ (2013) K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl− cotransporter. Am J Physiol Renal Physiol 305:F1177–F1188

    PubMed  Google Scholar 

  • Vargas-Poussou R, Huang C, Hulin P, Houillier P, Jeunemaitre X, Paillard M, Planelles G, Dechaux M, Miller RT, Antignac C (2002) Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol 13:2259–2266

    CAS  PubMed  Google Scholar 

  • Wade JB, Fang L, Coleman RA, Liu J, Grimm PR, Wang T, Welling PA (2011) Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. Am J Physiol Renal Physiol 300:F1385–F1393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WH (1994) Two types of K+ channel in thick ascending limb of rat kidney. Am J Phys 267:F599–F605

    CAS  Google Scholar 

  • Wang WH, White S, Geibel J, Giebisch G (1990) A potassium channel in the apical membrane of the rabbit thick ascending limb of Henle’s loop. Am J Phys 258:F244–F253

    CAS  Google Scholar 

  • Wang L, Zhang C, Su X, Lin DH, Wang W (2015) Caveolin-1 deficiency inhibits the basolateral K+ channels in the distal convoluted tubule and impairs renal K+ and Mg2+ transport. J Am Soc Nephrol 26:2678–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wen D, Li H, Wang-France J, Sansom SC (2017) Net K secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int 92:864–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MX, Cuevas-Gallardo C, Su XT, Wu P, Gao Z-X, Lin DH, McCormick JA, Yang CL, Wang WH, Ellison DH (2018a) Potassium (K+) intake modulates NCC activity via the K+ channel. Kir4.1. Kidney Int 93:893–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MX, Su XT, Wu P, Gao ZX, Wang WH, Staub O, Lin DH (2018b) Kir5.1 regulates Nedd4-2-mediated ubiquitination of Kir4.1 in distal nephron. Am J Physiol Renal Physiol 315:F986–F996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wareing M, Wilson RW, Kibble JD, Green R (1995) Estimated potassium reflection coefficient in perfused proximal convoluted tubules of the anaesthetized rat in vivo. J Physiol 488:153–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Liao Y, Zavilowitz B, Ren J, Liu W, Chan P, Rohatgi R, Estilo G, Jackson EK, Wang WH, Satlin LM (2014) Angiotensin II type 2 receptor regulates ROMK-like K+ channel activity in the renal cortical collecting duct during high dietary K+ adaptation. Am J Physiol Renal Physiol 307:F833–F843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein AM (1986) A mathematical model of the rat proximal tubule. Am J Physiol 250:F860–F873

    CAS  PubMed  Google Scholar 

  • Weinstein AM, Windhager EE (2001) The paracellular shunt of proximal tubule. J Membr Biol 184:241–245

    CAS  PubMed  Google Scholar 

  • Williams DM, Lopes CMB, Rosenhouse-Dantsker A, Connelly HL, Matavel A, Uchi J, McBeath E, Gray DA (2010) Molecular basis of decreased Kir4.1 function in SeSAME/EAST syndrome. J Am Soc Nephrol 21:2117–2129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    CAS  PubMed  Google Scholar 

  • Woda CB, Bragin A, Kleyman TR, Satlin LM (2001) Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol 280:F786–F793

    CAS  PubMed  Google Scholar 

  • Woda CB, Leite M Jr, Rohatgi R, Satlin LM (2002) Effects of luminal flow and nucleotides on [Ca2+]i in rabbit cortical collecting duct. Am J Physiol Renal Physiol 283:F437–F446

    CAS  PubMed  Google Scholar 

  • Wu P, Gao Z-X, Duan X, Su X-T, Wang MX, Lin D-H, Gu RM, Wang WH (2018) AT2R-mediated regulation of Na-Cl cotransporter (NCC) and renal K excretion depends on the K channel, Kir4.1. Hypertension 71:622–630

    CAS  PubMed  Google Scholar 

  • Wu P, Gao ZX, Su XT, Wang MX, Wang WH, Lin DH (2019) Kir4.1/Kir5.1 activity is essential for dietary sodium intak-induced modulation of Na-Cl cotransporter. J Am Soc Nephrol 30:216–227

    CAS  PubMed  Google Scholar 

  • Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000) Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J Gen Physiol 116:33–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Xu S, Guo X, Uchida S, Weinstein AM, Wang T, Palmer LG (2018) Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol 315:F1032–F1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Tian S, Chan HY, Biemesderfer D, Desir GV (2002) Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol 13:2839

    Google Scholar 

  • Youn JH, McDonough AA (2009) Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 71:381–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Younes-Ibrahim M, Barlet-Bas C, Buffin-Meyer B, Cheval L, Rajerison R, Doucet A (1995) Ouabain-sensitive and -insensitive K-ATPases in rat nephron: effect of K depletion. Am J Phys 268:F1141–F1147

    CAS  Google Scholar 

  • Zaika OL, Mamenko M, Palygin O, Boukelmoune N, Staruschenko A, Pochynyuk O (2013) Direct inhibition of basolateral Kir4.1/5.1 and Kir4.1 channels in the cortical collecting duct by dopamine. Am J Physiol Renal Physiol 305:F1277–F1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaika O, Palygin O, Tomilin V, Mamenko M, Staruschenko A, Pochynyuk O (2015) Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. Am J Physiol Renal Physiol 310:F311–F321

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang L, Thomas S, Wang K, Lin DH, Rinehart J, Wang WH (2013) Src-family protein tyrosine kinase regulates the basolateral K channel in the distal convoluted tubule (DCT) by phosphorylation of KCNJ10. J Biol Chem 288:26135–26146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang L, Zhang J, Su X-T, Lin DH, Scholl UI, Giebisch G, Lifton RP, Wang WH (2014) KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Proc Natl Acad Sci USA 111:11864–11869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang L, Su XT, Lin DH, Wang WH (2015) KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb. Am J Physiol Renal Physiol 308:F1288–F1296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang L, Su XT, Zhang J, Lin DH, Wang WH (2016) ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4PHAII mice. Am J Physiol Renal Physiol 312:F682–F688

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Gao Z, Vio CP, Xiao Y, Wu P, Zhang H, Guo X, Meng X, Gu L, Wang J, Duan X, Lin D, Wang W, Gu R (2018) Bradykinin stimulates renal Na+ and K+ excretion by inhibiting the K+ Channel (Kir4.1) in the distal convoluted tubule. Hypertension 72:361–369

    CAS  PubMed  Google Scholar 

  • Zweifach A, Desir GV, Aronson PS, Giebisch G (1992) Inhibition of Ca-activated K channels from renal microvillus membrane vesicles by amiloride analogs. J Membr Biol 128:115–122

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grant DK 54983 (WHW) and DK 115366 (LDH). The author thanks Ms. Gail Anderson for editing the manuscript.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, WH., Lin, DH. (2020). Inwardly Rectifying K+ Channel 4.1 Regulates Renal K+ Excretion in the Aldosterone-Sensitive Distal Nephron. In: Hamilton, K.L., Devor, D.C. (eds) Studies of Epithelial Transporters and Ion Channels. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55454-5_20

Download citation

Publish with us

Policies and ethics