Skip to main content

Evidential Deep Neural Networks for Uncertain Data Classification

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12275))

Abstract

Uncertain data classification makes it possible to reduce the decision risk through abstaining from classifying uncertain cases. Incorporating this idea into the process of computer aided diagnosis can greatly reduce the risk of misdiagnosis. However, for deep neural networks, most existing models lack a strategy to handle uncertain data and thus suffer the costs of serious classification errors. To tackle this problem, we utilize Dempster-Shafer evidence theory to measure the uncertainty of the prediction output by deep neural networks and thereby propose an uncertain data classification method with evidential deep neural networks (EviNet-UC). The proposed method can effectively improve the recall rate of the risky class through involving the evidence adjustment in the learning objective. Experiments on medical images show that the proposed method is effective to identify uncertain data instances and reduce the decision risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Yue, X., Fujita, H., Fu, S.: Three-way decision support for diagnosis on focal liver lesions. Knowl.-Based Syst. 127, 85–99 (2017)

    Article  Google Scholar 

  2. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16(1), 41–46 (1970)

    Article  Google Scholar 

  3. Cortes, C., DeSalvo, G., Mohri, M.: Boosting with abstention. In: Advances in Neural Information Processing Systems, pp. 1660–1668 (2016)

    Google Scholar 

  4. Cruz-Roa, A., et al.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Medical Imaging 2014: Digital Pathology, vol. 9041, p. 904103. International Society for Optics and Photonics (2014)

    Google Scholar 

  5. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: Classic Works of the Dempster-Shafer Theory of Belief Functions, pp. 57–72. Springer (2008). https://doi.org/10.1007/978-3-540-44792-4_3

  6. Denoeux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans. Knowl. Data Eng. 25(1), 119–130 (2011)

    Article  Google Scholar 

  7. Denoeux, T.: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective. Knowl.-Based Syst. 176, 54–67 (2019)

    Article  Google Scholar 

  8. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification. J. Mach. Learn. Res. 11(May), 1605–1641 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Fumera, G., Roli, F.: Support vector machines with embedded reject option. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 68–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45665-1_6

    Chapter  MATH  Google Scholar 

  10. Fumera, G., Roli, F., Giacinto, G.: Reject option with multiple thresholds. Pattern Recogn. 33(12), 2099–2101 (2000)

    Article  Google Scholar 

  11. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Advances in Neural Information Processing Systems, pp. 4878–4887 (2017)

    Google Scholar 

  12. Geifman, Y., El-Yaniv, R.: Selectivenet: a deep neural network with an integrated reject option. arXiv preprint arXiv:1901.09192 (2019)

  13. Ghesu, F.C., et al.: Quantifying and leveraging classification uncertainty for chest radiograph assessment. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 676–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_75

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hellman, M.E.: The nearest neighbor classification rule with a reject option. IEEE Trans. Syst. Sci. Cybern. 6(3), 179–185 (1970)

    Article  Google Scholar 

  16. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Article  Google Scholar 

  17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  18. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems, pp. 3179–3189 (2018)

    Google Scholar 

  19. Tardy, M., Scheffer, B., Mateus, D.: Uncertainty measurements for the reliable classification of mammograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_55

    Chapter  Google Scholar 

  20. Tong, Z., Xu, P., Denœux, T.: ConvNet and Dempster-Shafer theory for object recognition. In: Ben Amor, N., Quost, B., Theobald, M. (eds.) SUM 2019. LNCS (LNAI), vol. 11940, pp. 368–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35514-2_27

    Chapter  Google Scholar 

  21. Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341–353 (2010)

    Article  MathSciNet  Google Scholar 

  22. Yue, X., Chen, Y., Miao, D., Fujita, H.: Fuzzy neighborhood covering for three-way classification. Inf. Sci. 507, 795–808 (2020)

    Article  MathSciNet  Google Scholar 

  23. Yue, X., Chen, Y., Miao, D., Qian, J.: Tri-partition neighborhood covering reduction for robust classification. Int. J. Approximate Reasoning 83, 371–384 (2017)

    Article  MathSciNet  Google Scholar 

  24. Yue, X., Zhou, J., Yao, Y., Miao, D.: Shadowed neighborhoods based on fuzzy rough transformation for three-way classification. IEEE Trans. Fuzzy Syst. 28(5), 978–991 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (Nos. 61976134, 61573235, 61991410, 61991415) and Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, B., Yue, X., Lv, Y., Denoeux, T. (2020). Evidential Deep Neural Networks for Uncertain Data Classification. In: Li, G., Shen, H., Yuan, Y., Wang, X., Liu, H., Zhao, X. (eds) Knowledge Science, Engineering and Management. KSEM 2020. Lecture Notes in Computer Science(), vol 12275. Springer, Cham. https://doi.org/10.1007/978-3-030-55393-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55393-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55392-0

  • Online ISBN: 978-3-030-55393-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics