Skip to main content

The Impact of Rule Evaluation Metrics as a Conflict Resolution Strategy

  • Conference paper
  • First Online:
New Trends in Information and Communications Technology Applications (NTICT 2020)

Abstract

It is crucial for each rule induced via machine learning algorithm is to be associated with a numerical value(s) which can reflect its properties like accuracy, coverage, likelihood. The accumulation of these properties is the so-called evaluation metrics. These metrics are important for both rule induction systems (for stopping rules generation) and rule classification systems (for solving rules conflict). This paper describes the most important of both statistical and empirical rule evaluation metrics. Thereafter, the paper presents an approach that utilizes and shows the impact of these metrics as a rule conflict resolution strategy during classification tasks when combining two heterogeneous classifiers (Naïve Bayes (henceforth, NB) and decision tree J48). To accomplish this goal, authors have extracted rule-set from J48 and presented a new method for rule construction from NB. Experiments have been conducted on (WBC, Vote, and Diabetes) datasets. The experimental results show that different evaluation metrics have a different impact on the classification accuracy when used as a conflict resolution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Filter Technique, features are selected in isolation from data mining algorithms (i.e. before classification model is run) using some techniques to select the most appropriate features [22].

References

  1. Michalski, R.S.: Pattern recognition as rule-guided inductive inference. IEEE Trans. Pattern Anal. Mach. Intell. 4, 349–361 (1980)

    MATH  Google Scholar 

  2. Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)

    Google Scholar 

  3. An, A., Cercone, N.: Rule quality measures for rule induction systems: description and evaluation. Comput. Intell. 17(3), 409–424 (2001)

    Google Scholar 

  4. Bruha, I., Kockova, S.: Quality of decision rules: empirical and statistical approaches. Informatica 17, 233–243 (1993)

    Google Scholar 

  5. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  6. Webb, A.R., Copsey, K.D.: Statistical Pattern Recognition. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  7. Bruha, I., Tkadlec, J.: Rule quality for multiple-rule classifier: empirical expertise and theoretical methodology. Intell. Data Anal. 7(2), 99–124 (2003)

    MATH  Google Scholar 

  8. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Mach. Learn. 78(3), 343–379 (2010)

    MathSciNet  Google Scholar 

  9. Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: a unifying view. In: Džeroski, S., Flach, P. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 174–185. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48751-4_17

    Chapter  Google Scholar 

  10. Bruha, I.: Quality of decision rules: definitions and classification schemes for multiple rules. In: Machine Learning and Statistics, the Interface, pp. 107–131 (1997)

    Google Scholar 

  11. Wróbel, Ł., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction: an empirical approach. Fundamenta Informaticae 149(4), 419–449 (2016)

    MathSciNet  Google Scholar 

  12. Lindgren, T.: Methods for rule conflict resolution. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 262–273. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_26

    Chapter  Google Scholar 

  13. Huang, Z., Zhou, Z., He, T.: Resolving rule conflicts based on Naïve Bayesian model for associative classification. J. Digit. Inf. Manage. 12(1), 36–43 (2014)

    Google Scholar 

  14. An, A., Cercone, N.: Rule quality measures improve the accuracy of rule induction: an experimental approach. In: Raś, Zbigniew W., Ohsuga, S. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 119–129. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39963-1_13

    Chapter  MATH  Google Scholar 

  15. Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge (1977)

    MATH  Google Scholar 

  16. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  17. Torgo, L.: Controlled redundancy in incremental rule learning. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 185–195. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3_136

    Chapter  Google Scholar 

  18. Torgo, L.: Knowledge integration. Curr. Trends Knowl. Acquis. 8, 90 (1990)

    Google Scholar 

  19. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Google Scholar 

  20. Kononenko, I., Bratko, I.: Information-based evaluation criterion for classifier’s performance. Mach. Learn. 6(1), 67–80 (1991)

    Google Scholar 

  21. An, A., Cercone, N.: ELEM2: a learning system for more accurate classifications. In: Mercer, R.E., Neufeld, E. (eds.) AI 1998. LNCS, vol. 1418, pp. 426–441. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64575-6_68

    Chapter  Google Scholar 

  22. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson, London (2005)

    Google Scholar 

  23. Chakraborty, M., Biswas, S.K., Purkayastha, B.: Recursive rule extraction from NN using reverse engineering technique. New Gener. Comput. 36(2), 119–142 (2018)

    Google Scholar 

  24. Biswas, S.K., Chakraborty, M., Purkayastha, B.: A rule generation algorithm from neural network using classified and misclassified data. Int. J. Bio-Inspired Comput. 11(1), 60–70 (2018)

    Google Scholar 

  25. Bologna, G., Hayashi, Y.: A rule extraction study from SVM on sentiment analysis. Big Data Cogn. Comput. 2(1), 6 (2018)

    Google Scholar 

  26. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373–389 (1995)

    MATH  Google Scholar 

  27. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–3), 131–163 (1997)

    MATH  Google Scholar 

  28. Možina, M., Demšar, J., Kattan, M., Zupan, B.: Nomograms for visualization of naive Bayesian classifier. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 337–348. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30116-5_32

    Chapter  Google Scholar 

  29. Alashqur, A.: A novel methodology for constructing rule-based naïve Bayesian classifiers. Int. J. Comput. Sci. Inf. Technol. 7(1), 139–151 (2015). https://doi.org/10.5121/ijcsit.2015.7114

    Article  Google Scholar 

  30. Śnieżyński, B.: Converting a Naive Bayes model into a set of rules. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, pp. 221–229. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33521-8_22

    Chapter  Google Scholar 

  31. Korting, T.S.: C4. 5 algorithm and multivariate decision trees, image processing division. National Institute for Space Research–INPE, SP, Brazil (2006)

    Google Scholar 

  32. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Google Scholar 

  33. Kaur, G., Chhabra, A.: Improved J48 classification algorithm for the prediction of diabetes. Int. J. Comput. Appl. 98(22), 13–17 (2014)

    Google Scholar 

  34. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. University of California, Irvine (1998)

    Google Scholar 

  35. Weka 3: Data mining software in Java. University of Waikato, Hamilton, New Zealand, 19 52 (2011). www.cs.waikato.ac.nz/ml/weka

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nabeel H. Al-A’araji , Safaa O. Al-Mamory or Ali H. Al-Shakarchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-A’araji, N.H., Al-Mamory, S.O., Al-Shakarchi, A.H. (2020). The Impact of Rule Evaluation Metrics as a Conflict Resolution Strategy. In: Al-Bakry, A., et al. New Trends in Information and Communications Technology Applications. NTICT 2020. Communications in Computer and Information Science, vol 1183. Springer, Cham. https://doi.org/10.1007/978-3-030-55340-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55340-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55339-5

  • Online ISBN: 978-3-030-55340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics