Skip to main content

Ion Transport in the Choroid Plexus Epithelium

  • Chapter
  • First Online:
Ion Transport Across Epithelial Tissues and Disease

Abstract

The epithelial cells of the choroid plexus secrete fluid at a very high rate. Therefore, the modest-sized tissue has been studied for decades as a model for epithelial secretion. It was soon observed that the choroid plexus epithelium differs from many other secretory epithelia in the overall orchestration of main ion transport mechanisms, most prominently the luminal membrane expression of the Na+,K+-ATPase. A renewed interest in the mechanisms of ion and fluid transport of the tissue has emerged in the recent years. This development is spurred by the aspiration for therapeutic control of cerebrospinal fluid secretion in diseases with disturbed fluid or ionic balance in the central nervous system. This chapter describes long-established features of choroid plexus ion transport, emerging areas of research in the choroid plexus physiology as well as issues of current controversy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper SL (2009) Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 212(Pt 11):1672–1683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alper SL, Stuart-Tilley A, Simmons CF, Brown D, Drenckhahn D (1994) The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K+-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest 93(4):1430–1438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ames A 3rd, Sakanoue M, Endo S (1964) Na, K, Ca, Mg, and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27:672–681

    Article  PubMed  Google Scholar 

  • Ames A 3rd, Higashi K, Nesbett FB (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol 181(3):516–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin MS, Wang H, Reza E, Whitman SC, Tuana BS, Leenen FHH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol 289:R1787–R1797

    CAS  Google Scholar 

  • Amin MS, Reza E, Wang H, Leenen FH (2009) Sodium transport in the choroid plexus and salt-sensitive hypertension. Hypertension 54(4):860–867

    Article  PubMed  CAS  Google Scholar 

  • Aydin MD, Kanat A, Turkmenoglu ON, Yolas C, Gundogdu C, Aydin N (2014) Changes in number of water-filled vesicles of choroid plexus in early and late phase of experimental rabbit subarachnoid hemorrhage model: the role of petrous ganglion of glossopharyngeal nerve. Acta Neurochirurgica 156(7):1311–1317

    Article  PubMed  Google Scholar 

  • Bairamian D, Johanson CE, Parmelee JT, Epstein MH (1991) Potassium cotransport with sodium and chloride in the choroid plexus. J Neurochem 56(5):1623–1629

    Article  PubMed  CAS  Google Scholar 

  • Banizs B, Komlosi P, Bevensee MO, Schwiebert EM, Bell PD, Yoder BK (2007) Altered pHi regulation and Na+/HCO3- transporter activity in choroid plexus of cilia-defective Tg737orpk mutant mouse. Am J Physiol Cell Physiol 292(4):C1409–C1416

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101(6):2210–2222

    Article  PubMed  CAS  Google Scholar 

  • Bauer DF, Tubbs RS, Acakpo-Satchivi L (2008) Mycoplasma meningitis resulting in increased production of cerebrospinal fluid: case report and review of the literature. Childs Nerv Syst 24(7):859–862

    Article  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  PubMed  CAS  Google Scholar 

  • Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9(2):116–126

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, Boulpaep EL (eds) (2012) Medical physiology. Saunders, Philadelphia

    Google Scholar 

  • Bouzerar R, Chaarani B, Gondry-Jouet C, Zmudka J, Baledent O (2013) Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes. Neuroradiology 55(12):1447–1454

    Article  PubMed  Google Scholar 

  • Bouzinova EV, Praetorius J, Virkki LV, Nielsen S, Boron WF, Aalkjaer C (2005) Na+-dependent HCO3- uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 289(6):C1448–C1456

    Article  PubMed  CAS  Google Scholar 

  • Brett CL, Wei Y, Donowitz M, Rao R (2002) Human Na+/H+ exchanger isoform 6 is found in recycling endosomes of cells, not in mitochondria. Am J Physiol Cell Physiol 282(5):C1031–C1041

    Article  PubMed  CAS  Google Scholar 

  • Chai SY, McKinley MJ, Mendelsohn FA (1987) Distribution of angiotensin converting enzyme in sheep hypothalamus and medulla oblongata visualized by in vitro autoradiography. Clin Exp Hypertens A 9(2–3):449–460

    PubMed  CAS  Google Scholar 

  • Charron FM, Blanchard MG, Lapointe JY (2006) Intracellular hypertonicity is responsible for water flux associated with Na+/glucose cotransport. Biophys J 90(10):3546–3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Li W, Yoshida H, Tsuchida S, Nishimura H, Takemoto F, Okubo S, Fogo A, Matsusaka T, Ichikawa I (1997) Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol 272(3 Pt 2):F299–F304

    PubMed  CAS  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52(1):65–82

    Article  PubMed  CAS  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J, Johanson CE (1998) Vasopressin mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation. Eur J Pharmacol 347(2–3):205–209

    Article  PubMed  CAS  Google Scholar 

  • Christensen IB, Gyldenholm T, Damkier HH, Praetorius J (2013) Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol 4:344. https://doi.org/10.3389/fphys.2013.00344

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen HL, Paunescu TG, Matchkov V, Barbuskaite D, Brown D, Damkier HH, Praetorius J (2017) The V-ATPase is expressed in the choroid plexus and mediates cAMP-induced intracellular pH alterations. Physiol Rep 5(1). https://doi.org/10.14814/phy2.13072

  • Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Fuchtbauer AC, Fuchtbauer EM, Wang T, Praetorius J, Damkier HH (2018) The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 596(19):4709–4728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51(2):273–311

    Article  PubMed  CAS  Google Scholar 

  • Cushing H (1914) Studies on the cerebro-spinal fluid: I. Introduction. J Med Res 31(1):1–19

    PubMed  PubMed Central  CAS  Google Scholar 

  • Damkier HH, Praetorius J (2012) Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. Am J P hysiol Cell Physiol 302(10):C1452–C1459

    Article  CAS  Google Scholar 

  • Damkier HH, Prasad V, Hubner CA, Praetorius J (2009) Nhe1 is a luminal Na+/H+ exchanger in mouse choroid plexus and is targeted to the basolateral membrane in Ncbe/Nbcn2-null mice. Am J Physiol Cell Physiol 296(6):C1291–C1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93(4):1847–1892

    Article  PubMed  CAS  Google Scholar 

  • Damkier HH, Christensen HL, Christensen IB, Wu Q, Fenton RA, Praetorius J (2018) The murine choroid plexus epithelium expresses the 2Cl-/H+ exchanger ClC-7 and Na+/H+ exchanger NHE6 in the luminal membrane domain. Am J Physiol Cell Physiol 314(4):C439–C448

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Luck CP (1957) The effect of acetazoleamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. J Physiol 137(2):279–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davson H, Purvis C (1954) Cryoscopic apparatus suitable for studies on aqueous humour and cerebro-spinal fluid. J Physiol 124(2):12–13P

    Google Scholar 

  • Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209(1):131–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davson H, Welch K, Segal MB (eds) (1987) Physiology and pathophysiology of the CSF. Churchill Livingston, Edinburgh

    Google Scholar 

  • de Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de Jong W (2000) Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int 57(4):1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Deng QS, Johanson CE (1989) Stilbenes inhibit exchange of chloride between blood, choroid plexus and the cerebrospinal fluid. Brain Res 510:183–187

    Article  Google Scholar 

  • Deng QS, Johanson CE (1992) Cyclic AMP alteration of chloride transport into the choroid plexus-cerebrospinal fluid system. Neurosci Lett 143(1–2):146–150

    Article  PubMed  CAS  Google Scholar 

  • de Rougemont J, Ames A 3rd, Nesbett FB, Hofmann HF (1960) Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495

    Article  PubMed  CAS  Google Scholar 

  • Dogterom J, van Wimersma Greidanus TB, De Wied D (1978) Vasopressin in cerebrospinal fluid and plasma of man, dog, and rat. Am J Physiol 234(5):E463–E467

    PubMed  CAS  Google Scholar 

  • Döring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A (1998) The epithelial inward rectifier channel Kir 7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na+-K+-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279(6):C1685–C1693

    Article  PubMed  CAS  Google Scholar 

  • Faivre J (1854) Structure du conarium et des plexus choroïde chez l’hommes et des animaux. Gaz Med Paris 9:555–556

    Google Scholar 

  • Faraci FM, Mayhan WG, Farrell WJ, Heistad DD (1988) Humoral regulation of blood flow to choroid plexus: role of arginine vasopressin. Circ Res 63(2):373–379

    Article  PubMed  CAS  Google Scholar 

  • Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Physiol 258(1 Pt 2):R94–R98

    PubMed  CAS  Google Scholar 

  • Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ (2003) Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci 23 (6):2161–2169

    Google Scholar 

  • Frankel H, Kazemi H (1983) Regulation of CSF composition—blocking chloride-bicarbonate exchange. J Appl Physiol Respir Environ Exerc Physiol 55(1 Pt 1):177–182

    PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez LM, Avila J, Marti E, Lecuona E, Martin-Vasallo P (1994) Expression of the beta-subunit isoforms of the Na,K-ATPase in rat embryo tissues, inner ear and choroid plexus. Biol Cell 81 (3):215–222

    Google Scholar 

  • Granstam E, Wang L, Bill A (1993) Vascular effects of endothelin-1 in the cat; modification by indomethacin and L-NAME. Acta Physiologica Scand 148(2):165–176

    Article  CAS  Google Scholar 

  • Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ (2018) Genetic and pharmacologic inactivation of apical NKCC1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00026.2018

  • Hallbeck M, Hermanson O, Blomqvist A (1999) Distribution of preprovasopressin mRNA in the rat central nervous system. J Comp Neurol 411(2):181–200

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Zhang QJ, Kuroyanagi T, Kobayashi S (1993) Parasympathetic cerebrovascular innervation: an anterograde tracing from the sphenopalatine ganglion in the rat. Neurosurgery 32(5):822–827

    Article  PubMed  CAS  Google Scholar 

  • Hasan FM, Kazemi H (1976) Dual contribution theory of regulation of CSF HCO3 in respiratory acidosis. J Appl Physiol Respir Environ Exerc Physiol 40(4):559–567

    CAS  Google Scholar 

  • Haselbach M, Wegener J, Decker S, Engelbertz C, Galla HJ (2001) Porcine Choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Microsc Res Tech 52(1):137–152

    Article  PubMed  CAS  Google Scholar 

  • Held D, Fencl V, Pappenheimer JR (1964) Electrical potential of cerebrospinal fluid. J Neurophysiol 27:942–959

    Article  PubMed  CAS  Google Scholar 

  • Hemsen A, Lundberg JM (1991) Presence of endothelin-1 and endothelin-3 in peripheral tissues and central nervous system of the pig. Regul Pept 36(1):71–83

    Article  PubMed  CAS  Google Scholar 

  • Hernando F, Schoots O, Lolait SJ, Burbach JP (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142(4):1659–1668

    Article  PubMed  CAS  Google Scholar 

  • Hladky SB, Barrand MA (2016) Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13(1):19. https://doi.org/10.1186/s12987-016-0040-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes AL, Pakhomova A, Brown PD (2010) Regulatory volume increase in epithelial cells isolated from the mouse fourth ventricle choroid plexus involves Na+-H+ exchange but not Na+-K+-2Cl- cotransport. Brain Res 1323:1–10

    Article  PubMed  CAS  Google Scholar 

  • Husted RF, Reed DJ (1977) Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J Physiol 267:411–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imboden H, Harding JW, Hilgenfeldt U, Celio MR, Felix D (1987) Localization of angiotensinogen in multiple cell types of rat brain. Brain Res 410(1):74–77

    Article  PubMed  CAS  Google Scholar 

  • Inagami T, Celio MR, Clemens DL, Lau D, Takii Y, Kasselberg AG, Hirose S (1980) Renin in rat and mouse brain: immunohistochemical identification and localization. Clin Sci 59 Suppl 6:49s–51s

    Google Scholar 

  • Jacobs S, Ruusuvuori E, Sipila ST, Haapanen A, Damkier HH, Kurth I, Hentschke M, Schweizer M, Rudhard Y, Laatikainen LM, Tyynela J, Praetorius J, Voipio J, Hubner CA (2008) Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc Natl Acad Sci U S A 105(1):311–316

    Article  PubMed  Google Scholar 

  • Javaheri S, Wagner KR (1993) Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest 92(5):2257–2261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johanson CE, Murphy VA (1990) Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am J Physiol 258(6 Pt 2):F1538–F1546

    PubMed  CAS  Google Scholar 

  • Johanson CE, Sweeney SM, Parmelee JT, Epstein MH (1990) Cotransport of sodium and chloride by the adult mammalian choroid plexus. Am J Physiol 258(2 Pt 1):C211–C216

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE, Murphy VA, Dyas M (1992a) Ethacrynic acid and furosemide alter Cl, K, and Na distribution between blood, choroid plexus, CSF, and brain. Neurocheml Res 17(11):1079–1085

    Article  CAS  Google Scholar 

  • Johanson CE, Parandoosh Z, Dyas ML (1992b) Maturational differences in acetazolamide-altered pH and HCO3 of choroid plexus, cerebrospinal fluid, and brain. Am J Physiol 262(5 Pt 2):R909–R914

    PubMed  CAS  Google Scholar 

  • Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN (1999) AVP V1 receptor-mediated decrease in Cl- efflux and increase in dark cell number in choroid plexus epithelium. Am J Physiol 276(1 Pt 1):C82–C90

    Article  PubMed  CAS  Google Scholar 

  • Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E (2004) Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res 1(1):3. https://doi.org/10.1186/1743-8454-1-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johren O, Saavedra JM (1996) Expression of AT1A and AT1B angiotensin II receptor messenger RNA in forebrain of 2-wk-old rats. Am J Physiol 271(1 Pt 1):E104–E112

    PubMed  CAS  Google Scholar 

  • Kageyama Y, Bravo EL (1988) Hypertensive mechanisms associated with centrally administered aldosterone in dogs. Hypertension 11(6 Pt 2):750–753

    Article  PubMed  CAS  Google Scholar 

  • Kajita H, Brown PD (1997) Inhibition of the inward-rectifying Cl- channel in rat choroid plexus by a decrease in extracellular pH. J Physiol 498(Pt 3):703–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaria RN, Premkumar DR, Lin CW, Kroon SN, Bae JY, Sayre LM, LaManna JC (1998) Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterisation by amiloride-sensitive [3H]MIA binding and RT-PCR analysis. Brain Res Mol Brain Res 58:178–187

    Article  PubMed  CAS  Google Scholar 

  • Kallio H, Pastorekova S, Pastorek J, Waheed A, Sly WS, Mannisto S, Heikinheimo M, Parkkila S (2006) Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC Dev Biol 6:22. https://doi.org/10.1186/1471-213X-6-22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104(4):933–946

    Article  PubMed  CAS  Google Scholar 

  • Kao L, Kurtz LM, Shao X, Papadopoulos MC, Liu L, Bok D, Nusinowitz S, Chen B, Stella SL, Andre M, Weinreb J, Luong SS, Piri N, Kwong JMK, Newman D, Kurtz I (2011) Severe neurologic impairment in mice with targeted disruption of the electrogenic sodium bicarbonate cotransporter NBCe2 (Slc4a5 gene). J Biol Chem 286 (37):32563–32574

    Google Scholar 

  • Karadsheh MF, Byun N, Mount DB, Delpire E (2004) Localization of the KCC4 potassium-chloride cotransporter in the nervous system. Neuroscience 123(2):381–391

    Article  PubMed  CAS  Google Scholar 

  • Kaur C, Rathnasamy G, Ling EA (2016) The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol 75(3):198–213

    Article  PubMed  CAS  Google Scholar 

  • Kazemi H, Shannon DC, Carvallo-Gil E (1967) Brain CO2 buffering capacity in respiratory acidosis and alkalosis. J Appl Physiol Respir Environ Exerc Physiol 22(2):241–246

    CAS  Google Scholar 

  • Keep RF, Xiang J, Betz AL (1994) Potassium cotransport at the rat choroid plexus. Am J Physiol 267(6 Pt 1):C1616–C1622

    Article  PubMed  CAS  Google Scholar 

  • Kibble JD, Tresize AO, Brown PD (1996) Properties of the cAMP-activated Cl- conductance in choroid plexus epithelial cells isolated from the rat. J Physiol 496:69–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kibble JD, Garner C, Kajita H, Colledge WH, Evans MJ, Radcliff R, Brown PD (1997) Whole-cell Cl- conductances in mouse choroid plexus epithelial cells do not require CFTR expression. Am J Physiol 272:C1899–C1907

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff C, Stegmaier J, Bogner V, Buhmann S, Mussack T, Kreimeier U, Mutschler W, Biberthaler P (2006) Intrathecal and systemic concentration of NT-proBNP in patients with severe traumatic brain injury. J Neurotrauma 23(6):943–949

    Article  PubMed  Google Scholar 

  • Kister SJ (1956) Carbonic anhydrase inhibition. VI. The effect of acetazolamide on cerebrospinal fluid flow. J Pharmacol Exp Therap 117(4):402–405

    CAS  Google Scholar 

  • Kotera T, Brown PD (1994) Evidence for two types of potassium current in rat choroid plexus epithelial cells. Pflügers Archiv 427:317–324

    Article  PubMed  CAS  Google Scholar 

  • Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, Ghersi-Egea JF (2012) Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 138(6):861–879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kriegs JO, Homann V, Kinne-Saffran E, Kinne RK (2007) Identification and subcellular localization of paracellin-1 (claudin-16) in human salivary glands. Histochem Cell Biol 128(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Krug SM, Gunzel D, Conrad MP, Lee IF, Amasheh S, Fromm M, Yu AS (2012) Charge-selective claudin channels. Ann N Y Acad Sci 1257:20–28

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Chu F, Posner JB, Plum F (1969) Buffering capacity of cerebrospinal fluid in acute respiratory acidosis in dogs. Am J Physiol 217(4):1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Leenen FH (2010) The central role of the brain aldosterone-“ouabain” pathway in salt-sensitive hypertension. Biochimica Biophysica Acta 1802(12):1132–1139

    Article  CAS  Google Scholar 

  • Leenen FH, Hou X, Wang HW, Ahmad M (2015) Enhanced expression of epithelial sodium channels causes salt-induced hypertension in mice through inhibition of the alpha2-isoform of Na+, K+-ATPase. Physiol Rep 3(5). https://doi.org/10.14814/phy2.12383

  • Li H, Tornberg J, Kaila K, Airaksinen MS, Rivera C (2002) Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 16(12):2358–2370

    Article  PubMed  Google Scholar 

  • Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci U S A 87(14):5278–5282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1(3):245–266

    Article  PubMed  CAS  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201(4351):176–178

    Article  PubMed  CAS  Google Scholar 

  • Livingston RB (1949) Cerebrospinal fluid. In: Fulton JF (ed) A textbook of physiology. Saunders, Philadelphia, pp 916–980

    Google Scholar 

  • Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205(2):491–501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maktabi MA, Heistad DD, Faraci FM (1990) Effects of angiotensin II on blood flow to choroid plexus. Am J Physiol 258(2 Pt 2):H414–H418

    PubMed  CAS  Google Scholar 

  • Marques F, Sousa JC, Brito MA, Pahnke J, Santos C, Correia-Neves M, Palha JA (2016) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2016.08.011

  • Masuzawa T, Ohta T, Kawamura M, Nakahara N, Sato F (1984) Immunohistochemical localization of Na+, K+-ATPase in the choroid plexus. Brain Res 302(2):357–362

    Article  PubMed  CAS  Google Scholar 

  • Mayer SE, Sanders-Bush E (1993) Sodium-dependent antiporters in choroid plexus epithelial cultures from rabbit. J Neurochem 60:1308–1316

    Article  PubMed  CAS  Google Scholar 

  • McCarthy KD, Reed DJ (1974) The effect of acetazolamide and furosemide on cerebrospinal fluid production and choroid plexus carbonic anhydrase activity. J Pharmacol Exp Ther 189(1):194–201

    PubMed  CAS  Google Scholar 

  • Millar ID, Brown PD (2008) NBCe2 exhibits a 3 HCO3- :1 Na+ stoichiometry in mouse choroid plexus epithelial cells. Biochem Biophys Res Comm 373:550–554

    Article  PubMed  CAS  Google Scholar 

  • Millar ID, Bruce JI, Brown PD (2007) Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4:8

    Google Scholar 

  • Mortazavi MM, Griessenauer CJ, Adeeb N, Deep A, Bavarsad Shahripour R, Loukas M, Tubbs RI, Tubbs RS (2014) The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations. Childs Nerv Syst 30(2):205–214

    Article  PubMed  Google Scholar 

  • Murphy VA, Johanson CE (1989a) Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta 979(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • Murphy VA, Johanson CE (1989b) Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood-CSF barriers. J Neurochem 52(4):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Suzuki Y, Sakuta H, Ookata K, Kawahara K, Hirose S (1999) Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase. Biochem J 342:329–336

    Google Scholar 

  • Nattie EE, Adams JM (1988) DIDS decreases CSF HCO3- and increases breathing in response to CO2 in awake rabbits. J Appl Physiol (1985) 64(1):397–403

    Article  CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90(15):7275–7279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nilsson C, Fahrenkrug J, Lindvall-Axelsson M, Owman C (1991) Epithelial cells purified from choroid plexus have receptors for vasoactive intestinal polypeptide. Brain Res 542(2):241–247

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Brain Res Rev 17(2):109–138

    Article  PubMed  CAS  Google Scholar 

  • Nilsson C, Hultberg BM, Gammeltoft S (1996) Autocrine role of insulin-like growth factor II secretion by the rat choroid plexus. Eur J Neurosci 8(3):629–635

    Article  PubMed  CAS  Google Scholar 

  • O’Kelly CJ, Kulkarni AV, Austin PC, Urbach D, Wallace MC (2009) Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: incidence, predictors, and revision rates. Clinical article. J Neurosurg 111(5):1029–1035

    Article  PubMed  Google Scholar 

  • Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19(1):76–78

    Article  PubMed  CAS  Google Scholar 

  • Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K+-Cl- cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neurosci 103(2):481–491

    Article  CAS  Google Scholar 

  • Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E (1997) Expression of the Na+-K+-2Cl- cotransporter BSC2 in the nervous system. Am J Physiol 272(1 Pt 1):C173–C183

    Article  PubMed  CAS  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213(4):1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Pollay M, Davson H (1963) The passage of certain substances out of the cerebrospinal fluid. Brain 86:137–150

    Article  PubMed  CAS  Google Scholar 

  • Pollay M, Hisey B, Reynolds E, Tomkins P, Stevens FA, Smith R (1985) Choroid plexus Na+/K+-activated adenosine triphosphatase and cerebrospinal fluid formation. Neurosurgery 17(5):768–772

    Article  PubMed  CAS  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291(1):C59–C67

    Article  PubMed  CAS  Google Scholar 

  • Praetorius J, Nejsum LN, Nielsen S (2004) A SLC4A10 gene product maps selectively to the basolateral membrane of choroid plexus epithelial cells. Am J Physiol 286:C601–C610

    Article  CAS  Google Scholar 

  • Raichle ME, Grubb RL Jr (1978) Regulation of brain water permeability by centrally-released vasopressin. Brain Res 143(1):191–194

    Article  PubMed  CAS  Google Scholar 

  • Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56(12):1695–1716

    Article  PubMed  CAS  Google Scholar 

  • Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  PubMed  CAS  Google Scholar 

  • Roepke TK, Kanda VA, Purtell K, King EC, Lerner DJ, Abbott GW (2011) KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. FASEB J 25:4264–4273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Gunzel D, Fromm M (2010) Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 123(Pt 11):1913–1921. https://doi.org/10.1242/jcs.060665

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal R, Gunzel D, Krug SM, Schulzke JD, Fromm M, Yu AS (2016) Claudin-2-mediated cation and water transport share a common pore. Acta Physiol (Oxf). https://doi.org/10.1111/apha.12742

  • Rotter A, Birdsall NJ, Burgen AS, Field PM, Hulme EC, Raisman G (1979) Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of 3Hpropylbenzilylcholine mustard and its distribution in the forebrain. Brain Res 180(2):141–165

    Article  PubMed  CAS  Google Scholar 

  • Safaee M, Oh MC, Bloch O, Sun MZ, Kaur G, Auguste KI, Tihan T, Parsa AT (2013) Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis. Neuro Oncol 15(3):255–267

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Wright EM (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336:635–648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito Y, Wright E (1984) Regulation of bicarbonate transport across the brush border membrane of the bull-frog choroid plexus. J Physiol 350:327–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salpietro V, Mankad K, Kinali M, Adams A, Valenzise M, Tortorella G, Gitto E, Polizzi A, Chirico V, Nicita F, David E, Romeo AC, Squeri CA, Savasta S, Marseglia GL, Arrigo T, Johanson CE, Ruggieri M (2014) Pediatric idiopathic intracranial hypertension and the underlying endocrine-metabolic dysfunction: a pilot study. J Pediatr Endocrinol Metab 27(1–2):107–115

    PubMed  CAS  Google Scholar 

  • Schalk KA, Faraci FM, Heistad DD (1992) Effect of endothelin on production of cerebrospinal fluid in rabbits. Stroke 23(4):560–563

    Article  PubMed  CAS  Google Scholar 

  • Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci UA 95(16):9660–9664

    Article  CAS  Google Scholar 

  • Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipila ST, Voipio J, Kaila K (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12(7):817–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwerk C, Adam R, Borkowski J, Schneider H, Klenk M, Zink S, Quednau N, Schmidt N, Stump C, Sagar A, Spellerberg B, Tenenbaum T, Koczan D, Klein-Hitpass L, Schroten H (2011) In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect 13(11):953–962

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR (1997) 11beta-Hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action? Front Neuroendocrinol 18(1):49–99

    Article  PubMed  CAS  Google Scholar 

  • Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J Cell Sci 14(2):339–350

    PubMed  CAS  Google Scholar 

  • Segal MB, Chodobski A, Szmydynger-Chodobska J, Cammish H (1992) Effect of arginine vasopressin on blood vessels of the perfused choroid plexus of the sheep. Prog Brain Res 91:451–453

    Article  PubMed  CAS  Google Scholar 

  • Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M (2008) Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39(2):127–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siegel GJ, Holm C, Schreiber JH, Desmond T, Ernst SA (1984) Purification of mouse brain (Na+ + K+)-ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J Histochem Cytochem 32(12):1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97(6):1271–1275

    Article  PubMed  Google Scholar 

  • Sinclair AJ, Onyimba CU, Khosla P, Vijapurapu N, Tomlinson JW, Burdon MA, Stewart PM, Murray PI, Walker EA, Rauz S (2007) Corticosteroids, 11beta-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus. J Neuroendocrinol 19(8):614–620

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AJ, Walker EA, Burdon MA, van Beek AP, Kema IP, Hughes BA, Murray PI, Nightingale PG, Stewart PM, Rauz S, Tomlinson JW (2010) Cerebrospinal fluid corticosteroid levels and cortisol metabolism in patients with idiopathic intracranial hypertension: a link between 11beta-HSD1 and intracranial pressure regulation? J Clin Endocrinol Metab 95(12):5348–5356

    Article  PubMed  CAS  Google Scholar 

  • Speake T, Kajita H, Smith CP, Brown PD (2002) Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 ‘knock-out’ mice. J Physiol 539:385–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speake T, Kibble JD, Brown PD (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am J Physiol 286:C611–C620

    Article  CAS  Google Scholar 

  • Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE (2015) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86

    Article  PubMed  Google Scholar 

  • Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science 235(4787):470–473

    Article  PubMed  CAS  Google Scholar 

  • Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167. https://doi.org/10.1038/s41467-018-04677-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Supuran CT (2015) Acetazolamide for the treatment of idiopathic intracranial hypertension. Expert Rev Neurother 15(8):851–856

    Article  PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Simon-Oppermann C, Gray DA, Simon E (1984) Plasma and cerebrospinal fluid vasopressin and osmolality in relation to thirst. Pflugers Archiv 400(3):294–299

    Article  PubMed  CAS  Google Scholar 

  • Szmydynger-Chodobska J, Chun ZG, Johanson CE, Chodobski A (2002) Distribution of fibroblast growth factor receptors and their co-localization with vasopressin in the choroid plexus epithelium. Neuroreport 13(2):257–259

    Article  PubMed  CAS  Google Scholar 

  • Szmydynger-Chodobska J, Chung I, Kozniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A (2004) Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma 21(8):1090–1102

    Article  PubMed  Google Scholar 

  • Szmydynger-Chodobska J, Chung I, Chodobski A (2006) Chronic hypernatremia increases the expression of vasopressin and voltage-gated Na channels in the rat choroid plexus. Neuroendocrinol 84(5):339–345

    Article  CAS  Google Scholar 

  • Trabold R, Krieg S, Scholler K, Plesnila N (2008) Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma 25(12):1459–1465

    Article  PubMed  Google Scholar 

  • Tschirgi RD, Frost RW, Taylor JL (1954) Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor, 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide (diamox). Proc Soc Exp Biol Med 87(2):373–376

    Article  PubMed  CAS  Google Scholar 

  • Vallon V, Verkman AS, Schnermann J (2000) Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol Renal Physiol 278(6):F1030–F1033

    Article  PubMed  CAS  Google Scholar 

  • Van Huysse JW, Amin MS, Yang B, Leenen FH (2012) Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension 60(3):691–696

    Article  PubMed  CAS  Google Scholar 

  • Vogh BP, Godman DR (1985) Timolol plus acetazolamide: effect on formation of cerebrospinal fluid in cats and rats. Can J Physiol Pharmacol 63(4):340–343

    Article  PubMed  CAS  Google Scholar 

  • Vogh BP, Godman DR (1989) Effects of inhibition of angiotensin converting enzyme and carbonic anhydrase on fluid production by ciliary process, choroid plexus, and pancreas. J Ocular Pharmacol 5(4):303–311

    Article  CAS  Google Scholar 

  • Vogh BP, Godman DR, Maren TH (1987) Effect of AlCl3 and other acids on cerebrospinal fluid production: a correction. J Pharmacol Exp Ther 243(1):35–39

    PubMed  CAS  Google Scholar 

  • Wang HW, Amin MS, El-Shahat E, Huang BS, Tuana BS, Leenen FH (2010) Effects of central sodium on epithelial sodium channels in rat brain. Am J Physiol Regul Integr Comp Physiol 299(1):R222–R233

    Article  PubMed  CAS  Google Scholar 

  • Watters GV, Page L, Lorenzo AV, Cutler RW, Barlow CF (1969) Relationship between cerebrospinal fluid (CSF) formation, absorption and pressure in human hydrocephalus. Trans Am Neurol Assoc 94:153–156

    PubMed  CAS  Google Scholar 

  • Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R (1991) Cell-specific expression of mRNAs encoding Na+,K+-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci U S A 88 (16):7425–7429

    Google Scholar 

  • Weber KT (2003) Aldosteronism revisited: perspectives on less well-recognized actions of aldosterone. J Lab Clin Med 142(2):71–82

    Article  PubMed  CAS  Google Scholar 

  • Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol 205:617–624

    Article  PubMed  CAS  Google Scholar 

  • Welch K, Sadler K (1965) Electrical potentials of choroid plexus of the rabbit. J Neurosurg 22:344–351

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholza K, Liebnera S, Engelhardt H (2001) Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 307:77–80

    Article  PubMed  CAS  Google Scholar 

  • Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J Physiol 226(2):545–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright EM (1978) Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 83:3–34

    PubMed  CAS  Google Scholar 

  • Wu Q, Delpire E, Hebert SC, Strange K (1998) Functional demonstration of Na+-K+-2Cl- cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 275(6 Pt 1):C1565–C1572

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sugino M, Ohsawa N (1997) Possible regulation of intracranial pressure by human atrial natriuretic peptide in cerebrospinal fluid. Eur Neurol 38(2):88–93

    Article  PubMed  CAS  Google Scholar 

  • Zerbe RL, Robertson GL (1983) Osmoregulation of thirst and vasopressin secretion in human subjects: effect of various solutes. Am J Physiol 244(6):E607–E614

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1991) Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol 444:153–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeuthen T (1994) Cotransport of K+, Cl- and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478(Pt 2):203–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeuthen T, Wright EM (1978) An electrogenic Na+/K+ pump in the choroid plexus. Biochimica et Biophys Acta 511(3):517–522

    Article  CAS  Google Scholar 

  • Zeuthen T, Wright EM (1981) Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J Membrane Biol 60:105–128

    Article  CAS  Google Scholar 

  • Zeuthen T, Gorraitz E, Her K, Wright EM, Loo DD (2016) Structural and functional significance of water permeation through cotransporters. Proc Natl Acad Sci U S A 113(44):E6887–E6894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11(7):816–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zorad S, Alsasua A, Saavedra JM (1998) Decreased expression of natriuretic peptide A receptors and decreased cGMP production in the choroid plexus of spontaneously hypertensive rats. Mol Chem Neuropathol 33(3):209–222

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe Praetorius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnsen, L.Ø., Damkier, H.H., Praetorius, J. (2020). Ion Transport in the Choroid Plexus Epithelium. In: Hamilton, K.L., Devor, D.C. (eds) Ion Transport Across Epithelial Tissues and Disease. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55310-4_10

Download citation

Publish with us

Policies and ethics