Skip to main content

Organoids as a Model for Intestinal Ion Transport Physiology

  • Chapter
  • First Online:
Ion Transport Across Epithelial Tissues and Disease

Abstract

The advent of intestinal organoid culture in 2009 was a fortuitous development in the search for a valid marker of intestinal stem cells, and provided proof of murine intestinal stem cell regenerative potential. Intestinal organoid culture was preceded by key discoveries of the Wnt/β-catenin signaling pathway and the development of 3D culture matrices. The latter, involving a laminin-rich gel to provide an artificial basement membrane, was instrumental to primary intestinal epithelial culture by preventing anoikis, an immediate apoptotic event when intestinal epithelial cells detach from the basement membrane. One of the first physiological studies using 3D murine “mini-gut” structures showed cystic fibrosis transmembrane conductance regulator (CFTR) expression and anion channel activity in the crypt-like structures projecting from the epithelial-lined central cavity. Detailed investigations of ion transport physiology using human intestinal organoids, both primary and iPSC-derived, found close similarities to existing knowledge of ion transport physiology and included the development of the forskolin-induced swelling assay (FIS). The FIS assay using organoids cultured from rectal biopsies of cystic fibrosis patients provided an avenue for personalized medicine to test small-molecule modulators on different CFTR mutations. More recent research has led to the development of 2D primary intestinal epithelial monolayers, which provide easy access to the apical, lumen-facing membrane and the opportunity for traditional ion transport studies with Ussing chambers. Human 2D primary intestinal monolayers also demonstrate the dominance of CFTR in anion secretion and provide a quantitative evaluation of its chloride and bicarbonate secretory conductances. These aspects of ion transport physiology using 2D and 3D intestinal cultures are discussed along with the relative advantages and disadvantages of each culture method with respect to technical aspects and recapitulation of native intestinal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, Sagel SD, Hornick DB, Konstan MW, Donaldson SH, Moss RB, Pilewski JM, Rubenstein RC, Uluer AZ, Aitken ML, Freedman SD, Rose LM, Mayer-Hambelett N, Dong Q, Zha J, Stone AJ, Olson ER, Ordonez CL, Campbell PW, Ashlock MA, Ramsey BW (2010) Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med 343:1991–2003

    Article  Google Scholar 

  • Ainsworth MA, Amelsberg M, Hogan DL, Isenberg JI (1996) Acid-base transport in isolated rabbit duodenal villus and crypt cells. Scand J Gastroenterol 31:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Avula LR, Chen T, Kovbasnjuk O, Donowitz M (2018) Both NHERF3 and NHERF2 are necessary for multiple aspects of acute regulation of NHE3 by elevated Ca2+, cGMP, and lysophosphatidic acid. Am J Physiol 314:G81–G90

    Google Scholar 

  • Bajnath RB, Dekker K, Vaandrager AB, de Jonge HR, Groot JA (1992) Biphasic increase of apical Cl- conductance by muscarinic stimulation of HT-29cl.19A human colon carcinoma cell line: evidence for activation of different Cl- conductances by carbachol and forskolin. J Membr Biol 127:81–94

    Article  PubMed  CAS  Google Scholar 

  • Barker N, Van Es JH, Kuipers J, Kujala P, Van der Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1008

    Article  PubMed  CAS  Google Scholar 

  • Barrett KE, Keely SJ (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62:535–572

    Article  PubMed  CAS  Google Scholar 

  • Barriere H, Poujeol C, Tauc M, Blasi JM, Counillon L, Poujeol P (2001) CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol 281:C810–C824

    Article  CAS  Google Scholar 

  • Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H (2017) Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20:177–190

    Article  CAS  PubMed  Google Scholar 

  • Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE (2018) Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 5:659–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedetto R, Ousingsawat J, Wanitchakool P, Zhang Y, Holtzman MJ, Amaral M, Rock JR, Schreiber R, Kunzelmann K (2017) Epithelial chloride transport by CFTR requires TMEM16A. Sci Rep 7:12397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertrand CA, Mitra S, Mishra SK, Wang X, Zhao Y, Pilewski JM, Madden DR, Frizzell RA (2017) The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am J Physiol 312:L912–L925

    Google Scholar 

  • Bijvelds MJC, Bot AG, Escher JC, de Jonge HR (2009) Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology 137:976–985

    Article  PubMed  CAS  Google Scholar 

  • Bijvelds MJC, Loos M, Bronsveld I, Hellemans A, Bongartz JP, Ver Donck L, Cox E, de Jonge HR, Schuurkes JA, De Maeyer JH (2015) Inhibition of heat-stable toxin-induced intestinal salt and water secretion by a novel class of guanylyl cyclase C inhibitors. J Infect Dis 212:1806–1815

    Article  PubMed  CAS  Google Scholar 

  • Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM, Rietschel E, Huang X, Waltz D, Patel NR, Rodman D (2014) A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med 2:527–538

    Article  PubMed  CAS  Google Scholar 

  • Chen JH, Cai Z, Sheppard DN (2009) Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel. J Biol Chem 284:35495–35506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 141:537–561

    Article  PubMed  CAS  Google Scholar 

  • Co JY, Margalef-Catala M, Li X, Mah AT, Kuo CJ, Monack DM, Amieva MR (2019) Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26:2509–2520 e2504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779

    Article  PubMed  CAS  Google Scholar 

  • Davoudi Z, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Barrett TA, Narasimhan B, Wang Q (2018) Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A 106:876–886

    Article  PubMed  CAS  Google Scholar 

  • De Boeck K, Munck A, Walker S, Faro A, Hiatt P, Gilmartin G, Higgins M (2014) Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros 13:674–680

    Article  PubMed  CAS  Google Scholar 

  • De Jonge HR (1975) The response of small intestinal villous and crypt epithelium to choleratoxin in rat and guinea pig. Evidence against a specific role of the crypt cells in choleragen-induced secretion. Biochim Biophys Acta 381:128–143

    Article  PubMed  Google Scholar 

  • Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NWM, Bijvelds MJC, Scholte BJ, Nieuwenhuis EES, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945

    Article  PubMed  CAS  Google Scholar 

  • Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EES, Houwen RHJ, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HGM, de Winter-de Groot KM, Clevers H, van der Ent CK, Beekman JM (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 8:344ra384

    Article  CAS  Google Scholar 

  • Donowitz M, Welsh MJ (1987) Regulation of mammalian small intestinal electrolyte secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1351–1388

    Google Scholar 

  • Dorwart MR, Shcheynikov N, Yang D, Muallem S (2008) The solute carrier 26 family of proteins in epithelial ion transport. Physiology 23:104–114

    Article  PubMed  CAS  Google Scholar 

  • Dutton JS, Hinman SS, Kim R, Wang Y, Allbritton NL (2019) Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol 37:744–760

    Article  PubMed  CAS  Google Scholar 

  • Eklund S, Brunsson I, Jodal M, Lundgren O (1987) Changes in cyclic 3′5′-adenosine monophosphate tissue concentration and net fluid transport in the cat’s small intestine elicited by cholera toxin, arachidonic acid, vasoactive intestinal polypeptide and 5-hydroxytryptamine. Acta Physiol Scand 129:115–125

    Article  PubMed  CAS  Google Scholar 

  • Elgavish A (1991) High intracellular pH in CFPAC: a pancreas cell line from a patient with cystic fibrosis is lowered by retrovirus-mediated CFTR gene transfer. Biochem Biophys Res Commun 180:342–348

    Article  PubMed  CAS  Google Scholar 

  • Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT (2013) Loss of NHE3 alters gut microbiota composition and influences bacteroides thetaiotaomicron growth. Am J Physiol 305:G697–G711

    CAS  Google Scholar 

  • Ermund A, Recktenwald CV, Skjak-Braek G, Meiss LN, Onsoyen E, Rye PD, Dessen A, Myrset AH, Hansson GC (2017) OligoG CF-5/20 normalizes cystic fibrosis mucus by chelating calcium. Clin Exp Pharmacol Physiol 44:639–647

    Article  PubMed  CAS  Google Scholar 

  • Estes MK, Ettayebi K, Tenge VR, Murakami K, Karandikar U, Lin SC, Ayyar BV, Cortes-Penfield NW, Haga K, Neill FH, Opekun AR, Broughman JR, Zeng XL, Blutt SE, Crawford SE, Ramani S, Graham DY, Atmar RL (2019) Human norovirus cultivation in nontransformed stem cell-derived human intestinal enteroid cultures: Success and challenges. Viruses 11:1–12

    Article  CAS  Google Scholar 

  • Evans GS, Flint N, Potten CS (1994) Primary cultures for studies of cell regulation and physiology in intestinal epithelium. Annu Rev Physiol 56:399–417

    Article  PubMed  CAS  Google Scholar 

  • Fernando EH, Dicay M, Stahl M, Gordon MH, Vegso A, Baggio C, Alston L, Lopes F, Baker K, Hirota S, McKay DM, Vallance B, MacNaughton WK (2017) A simple, cost-effective method for generating murine colonic 3D enteroids and 2D monolayers for studies of primary epithelial cell function. Am J Physiol 313:G467–G475

    Google Scholar 

  • Ferrera L, Baroni D, Moran O (2019) Lumacaftor-rescued F508del-CFTR has a modified bicarbonate permeability. J Cyst Fibros 18:602–605

    Article  PubMed  CAS  Google Scholar 

  • Fihn BM, Sjoqvist A, Jodal M (2000) Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 119:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Flores CA, Melvin JE, Figueroa CD, Sepúlveda FV (2007) Abolition of Ca2+−mediated intestinal anion secretion and increased stool dehydration in mice lacking the intermediate conductance Ca2+−dependent K+ channel Kcnn4. J Physiol Lond 583:705–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foskett JK (1990) [Ca2+]i modulation of Cl- content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol 259:C998–C1004

    Article  PubMed  CAS  Google Scholar 

  • Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM, Zeng XL, Crawford SE, Broughman JR, Estes MK, Donowitz M (2014) Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 239:1124–1134

    Article  CAS  Google Scholar 

  • Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O, Estes MK, de Jonge HR, Donowitz M (2016) Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150:638–649.e638

    Article  PubMed  Google Scholar 

  • Fuller MK, Faulk DM, Sundaram N, Shroyer NF, Henning SJ, Helmrath MA (2012) Intestinal crypts reproducibly expand in culture. J Surg Res 178:48–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Furukawa O, Bi LC, Guth PH, Engel E, Hirokawa M, Kaunitz JD (2004) NHE3 inhibition activates duodenal bicarbonate secretion in the rat. Am J Physiol 286:G102–G109

    CAS  Google Scholar 

  • Gallagher AM, Gottlieb RA (2001) Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. Am J Physiol 281:G681–G687

    Article  CAS  Google Scholar 

  • Gawenis LR, Franklin CL, Simpson JE, Palmer BA, Walker NM, Wiggins TM, Clarke LL (2003) cAMP inhibition of murine intestinal Na+/H+ exchange requires CFTR-mediated cell shrinkage of villus epithelium. Gastroenterology 125:1148–1163

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci U S A 93:3587–3591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gracz AD, Ramalingam S, Magness ST (2010) Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am J Physiol 298:G590–G600

    CAS  Google Scholar 

  • Greger R (2000) Role of CFTR in the colon. Annu Rev Physiol 62:467–491

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Bleich M, Leipziger J, Ecke D, Mall M, Kunzelmann K (1997) Regulation of ion transport in colonic crypts. News Physiol Sci 12:62–66

    CAS  Google Scholar 

  • Hallbäck D-A, Jodal M, Sjöqvist A, Lundgren O (1982) Evidence for cholera secretion emanating from the crypts: a study of villus tissue osmolality and fluid and electrolyte transport in the small intestine of the cat. Gastroenterology 83:1051–1056

    Article  PubMed  Google Scholar 

  • Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, Mall MA, Welter JJ, Ramsey BW, McKee CM, Marigowda G, Moskowitz SM, Waltz D, Sosnay PR, Simard C, Ahluwalia N, Xuan F, Zhang Y, Taylor-Cousar JL, KS MC, Group VXT (2019) Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394:1940–1948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heo I, Dutta D, Schaefer DA, Iakobachvili N, Artegiani B, Sachs N, Boonekamp KE, Bowden G, Hendrickx APA, Willems RJL, Peters PJ, Riggs MW, O’Connor R, Clevers H (2018) Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol 3:814–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirokawa M, Takeuchi T, Chu S, Akiba Y, Wu V, Guth PH, Engel E, Montrose MH, Kaunitz JD (2004) Cystic fibrosis gene mutation reduces epithelial cell acidification and injury in acid-perfused mouse duodenum. Gastroenterology 127:1162–1173

    Article  PubMed  CAS  Google Scholar 

  • Hofmann C, Obermeier F, Artinger M, Hausmann M, Falk W, Schoelmerich J, Rogler G, Grossmann J (2007) Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 132:587–600

    Article  PubMed  CAS  Google Scholar 

  • Ikpa PT, Meijsen KF, Nieuwenhuijze NDA, Dulla K, De Jonge HR, Bijvelds MJC (2020) Transcriptome analysis of the distal small intestine of Cftr null mice. Genomics 112:1139–1150

    Article  PubMed  CAS  Google Scholar 

  • In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M (2016) Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol 13:633–642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2013) Characterization of CFTR high expresser cells in the intestine. Am J Physiol 305:G453–G465

    CAS  Google Scholar 

  • Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J (1994) Functional characterization of three isoforms of the Na +/H + exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity and role in cell proliferation. J Biol Chem 269:23544–23552

    PubMed  CAS  Google Scholar 

  • Kim HJ, Ingber DE (2013) Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 5:1130–1140

    Article  CAS  Google Scholar 

  • Kim K-A, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K (2005) Mitogenic influence of human R-Spondin1 on the intestinal epithelium. Science 309:1256–1259

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Li H, Collins JJ, Ingber DE (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113:E7–E15

    Article  PubMed  CAS  Google Scholar 

  • Kim GA, Spence JR, Takayama S (2017) Bioengineering for intestinal organoid cultures. Curr Opin Biotechnol 47:51–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Jun I, Shin DH, Yoon JG, Piao H, Jung J, Park HW, Cheng MH, Bahar I, Whitcomb DC, Lee MG (2020) Regulation of CFTR bicarbonate channel activity by WNK1: implications for pancreatitis and CFTR-related disorders. Cell Mol Gastroenterol Hepatol 9:79–103

    Article  PubMed  Google Scholar 

  • Kockerling A, Fromm M (1993) Origin of cAMP-dependent Cl secretion from both crypts and surface epithelia of rat intestine. Am J Physiol 264:C1294–C1301

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Centeio R, Wanitchakool P, Cabrita I, Benedetto R, Saha T, Hoque KM, Schreiber R (2019) Control of ion transport by Tmem16a expressed in murine intestine. Front Physiol 10:1262

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurashima K, Yu FH, Cabado AG, Szabo EZ, Grinstein S, Orlowski J (1997) Identification of sites required for down-regulation of Na +/H + exchanger NHE3 activity by cAMP-dependent protein kinase. J Biol Chem 272:28672–28679

    Article  PubMed  CAS  Google Scholar 

  • Lee RJ, Foskett JK (2010) cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 120:3137–3148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee B, Hong GS, Lee SH, Kim H, Kim A, Hwang EM, Kim J, Lee MG, Yang JY, Kweon MN, Tse CM, Mark D, Oh U (2019) Anoctamin 1/TMEM16A controls intestinal Cl(−) secretion induced by carbachol and cholera toxin. Exp Mol Med 51:1–14

    PubMed  PubMed Central  Google Scholar 

  • Linley J, Loganathan A, Kopanati S, Sandle GI, Hunter M (2014) Evidence that two distinct crypt cell types secrete chloride and potassium in human colon. Gut 63:472–479

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Walker NM, Cook MT, Ootani A, Clarke LL (2012) Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am J Physiol 302:C1492–C1503

    Article  CAS  Google Scholar 

  • Liu X, Li T, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo B, Soleimani M, Seidler U (2014) Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(−) transport and reduces survival in CFTR-deficient mice. Pflugers Arch 467:1261–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL (2015) Defective goblet cell exocytosis contributes to murine cystic fibrosis–associated intestinal disease. J Clin Invest 125:1056–1068

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLeod RJ, Lembessis P, Hamilton JR (1994) Isotonic volume reduction associated with cAMP stimulation of 36Cl efflux from jejunal crypt epithelial cells. Am J Physiol 267:G387–G392

    PubMed  CAS  Google Scholar 

  • Matos JE, Sausbier M, Beranek G, Sausbier U, Ruth P, Leipziger J (2007) Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl- secretion. Acta Physiol (Oxf) 189:251–258

    Article  CAS  Google Scholar 

  • Matsu-Ura T, Dovzhenok A, Aihara E, Rood J, Le H, Ren Y, Rosselot AE, Zhang T, Lee C, Obrietan K, Montrose MH, Lim S, Moore SR, Hong CI (2016) Intercellular coupling of the cell cycle and circadian clock in adult stem cell culture. Mol Cell 64:900–912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Middendorp S, Schneeberger K, Wiegerinck CL, Mokry M, Akkerman RDL, van Wijngaarden S, Clevers H, Nieuwenhuis EES (2014) Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, CM MK, Moskowitz SM, Nair N, Savage J, Simard C, Tian S, Waltz D, Xuan F, Rowe SM, Jain R, Group VXS (2019) Elexacaftor-Tezacaftor-Ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 381:1809–1819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mignen O, Egee P, Liberge M, Harvey BJ (2000) Basolateral outward rectifier chloride channel in isolated crypts of mouse colon. Am J Physiol 279:G277–G287

    CAS  Google Scholar 

  • Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protocols 8:2471–2482

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS (2012) Wnt5a potentiates TGF- signaling to promote colonic crypt regeneration after tissue injury. Science 338:108–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Namkung W, Yao Z, Finkbeiner WE, Verkman AS (2011) Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. FASEB J 25:4048–4062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noone PG, Zhou ZQ, Silverman LM, Jowell PS, Knowles MR, Cohn JA (2001) Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. Gastroenterology 121:1310–1319

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin EV, Hunt DM, Bostrom TE, Hunter D, Gaskin KJ, Gyory A, Cockayne DJ (1996) X-ray microanalysis of cell elements in normal and cystic fibrosis jejunum: evidence for chloride secretion in villi. Gastroenterology 110:411–418

    Article  PubMed  Google Scholar 

  • Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15:701–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul T, Li S, Khurana S, Leleiko NS, Walsh MJ (2007) The epigenetic signature of CFTR expression is co-ordinated via chromatin acetylation through a complex intronic element. Biochem J 408:317–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen N, Frimurer TM, Terndrup Pedersen M, Egerod KL, Wewer Albrechtsen NJ, Holst JJ, Grapin-Botton A, Jensen KB, Schwartz TW (2018) Inhibiting RHOA signaling in mice increases glucose tolerance and numbers of enteroendocrine and other secretory cells in the intestine. Gastroenterology 155:1164–1176. e1162

    Article  PubMed  CAS  Google Scholar 

  • Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 91:5340–5344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79(Suppl. 1):S3–S22

    Article  PubMed  CAS  Google Scholar 

  • Ramsey BD, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR (2007) Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol Lond 582:507–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robert ME, Singh SK, Ikuma M, Jain D, Ardito T, Binder HJ (2001) Morphology of isolated colonic crypts. Cells Tissues Organs 168:246–251

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH, van den Brink S, van Houdt WJ, Pronk A, van Gorp J, Siersema PD, Clevers H (2011a) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–1772

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Van Es JH, Snippert HJ, Stange DE, Vries RG, Van Den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011b) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–419

    Article  PubMed  CAS  Google Scholar 

  • Saxena K, Blutt SE, Ettayebi K, Zeng XL, Broughman JR, Crawford SE, Karandikar UC, Sastri NP, Conner ME, Opekun AR, Graham DY, Qureshi W, Sherman V, Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Donowitz M, Estes MK (2016) Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol 90:43–56

    Article  PubMed  CAS  Google Scholar 

  • Schwank G, Koo B-K, Sasselli V, Dekkers Johanna F, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent Cornelis K, Nieuwenhuis Edward ES, Beekman Jeffrey M, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JS, de Jonge HR, Forrest JN Jr (2015) Value of organoids from comparative epithelia models. Yale J Biol Med 88:367–374

    PubMed  PubMed Central  CAS  Google Scholar 

  • Seidler U, Singh AK, Cinar A, Chen M, Hillesheim J, Hogema B, Riederer B (2009) The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165:249–260

    Article  PubMed  CAS  Google Scholar 

  • Shin W, Hinojosa CD, Ingber DE, Kim HJ (2019) Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15:391–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simpson JE, Gawenis LR, Walker NM, Boyle KT, Clarke LL (2005) Chloride conductance of CFTR facilitates basal Cl/HCO3 exchange in the villous epithelium of intact murine duodenum. Am J Physiol 288:G1241–G1251

    CAS  Google Scholar 

  • Singh SK, Binder HJ, Boron WF, Geibel JP (1995) Fluid absorption in isolated perfused colonic crypts. J Clin Invest 96:2373–2379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed  CAS  Google Scholar 

  • Stelzner M, Helmrath M, Dunn JCY, Henning SJ, Houchen CW, Kuo C, Lynch J, Li L, Magness ST, Martin MG, Wong MH, Yu J (2012) A nomenclature for intestinal in vitro cultures. Am J Physiol 302:G1359–G1363

    CAS  Google Scholar 

  • Stewart CP, Turnberg LA (1989) A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol 257:G334–G343

    PubMed  CAS  Google Scholar 

  • Strong TV, Boehm K, Collins FS (1994) Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest 93:347–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strubberg AM, Liu J, Walker NM, Stefanski CD, MacLeod RJ, Magness ST, Clarke LL (2018) Cftr modulates Wnt/beta-catenin signaling and stem cell proliferation in murine intestine. Cell Mol Gastroenterol Hepatol 5:253–271

    Article  PubMed  Google Scholar 

  • Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhong L, Ma Z, Zheng J, Fang X, Ma T (2014) Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLoS One 9:e115443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szászi K, Kurashima K, Kaibuchi K, Grinstein S, Orlowski J (2001) Role of the cytoskeleton in mediating cAMP-dependent protein kinase inhibition of the epithelial Na+/H+ Exchanger NHE3. J Biol Chem 276:40761–40768

    Article  PubMed  Google Scholar 

  • Tamada T, Hug MJ, Frizzell RA, Bridges RJ (2001) Microelectrode and impedance analysis of anion secretion in Calu-3 cells. JOP 2:219–228

    PubMed  CAS  Google Scholar 

  • Than BLN, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, Bruner V, Abrahante J, Schumann A, Luczak T, Niemczyk A, O’Sullivan MG, Medema JP, Fijneman RJA, Meijer GA, Van den Broek E, Hodges CA, Scott PM, Vermeulen L, Cormier RT (2016) CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35:4179–4187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiagarajah JR, Verkman AS (2013) Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 13:888–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valverde MA, O’Brien JA, Sepulveda FV, Ratcliff RA, Evans MJ, Colledge WH (1995) Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice. Proc Natl Acad Sci U S A 92:9038–9041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Hee B, Loonen LMP, Taverne N, Taverne-Thiele JJ, Smidt H, Wells JM (2018) Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids. Stem Cell Res 28:165–171

    Article  PubMed  CAS  Google Scholar 

  • van der Helm MW, Henry OYF, Bein A, Hamkins-Indik T, Cronce MJ, Leineweber WD, Odijk M, van der Meer AD, Eijkel JCT, Ingber DE, van den Berg A, Segerink LI (2019) Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip 19:452–463

    Article  PubMed  Google Scholar 

  • VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C, Tarr PI, Ciorba MA, Stappenbeck TS (2015) Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64:911–920

    Article  PubMed  CAS  Google Scholar 

  • Vega G, Guequen A, Johansson MEV, Arike L, Martinez-Abad B, Nystrom EEL, Scudieri P, Pedemonte N, Millar-Buchner P, Philp AR, Galietta LJ, Hansson GC, Flores CA (2019) Normal calcium-activated anion secretion in a mouse selectively lacking TMEM16A in intestinal epithelium. Front Physiol 10:694

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitzthum C, Clauss WG, Fronius M (2015) Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress. Biochim Biophys Acta 1848:2942–2951

    Article  PubMed  CAS  Google Scholar 

  • Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP, Group TS, Group TS (2015) Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373:220–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL (2016) Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol 310:G70–G80

    Google Scholar 

  • Wang Y, Kim R, Sims CE, Allbritton NL (2019) Building a thick mucus hydrogel layer to improve the physiological relevance of in vitro primary colonic epithelial models. Cell Mol Gastroenterol Hepatol 8:653–655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilke G, Funkhouser-Jones LJ, Wang Y, Ravindran S, Wang Q, Beatty WL, Baldridge MT, VanDussen KL, Shen B, Kuhlenschmidt MS, Kuhlenschmidt TB, Witola WH, Stappenbeck TS, Sibley LD (2019) A stem-cell-derived platform enables complete cryptosporidium development in vitro and genetic tractability. Cell Host Microbe 26:123–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM (2014) Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11:106–112

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA, Knipping K, Tuysuz N, Dekkers JF, Wang Y, de Jonge J, Sprengers D, van der Laan LJ, Beekman JM, Ten Berge D, Metselaar HJ, de Jonge H, Koopmans MP, Peppelenbosch MP, Pan Q (2015) Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antivir Res 123:120–131

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Wang Y, Dang W, Xu L, Su J, Zhou X, Wang W, Felczak K, van der Laan LJ, Pankiewicz KW, van der Eijk AA, Bijvelds MJC, Sprengers D, de Jonge HR, Koopmans MP, Metselaar HJ, Peppelenbosch MP, Pan Q (2016) Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antivir Res 133:41–49

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Tse CM, Avula LR, Singh V, Foulke-Abel J, de Jonge HR, Donowitz M (2018) Molecular basis and differentiation-associated alterations of anion secretion in human duodenal enteroid monolayers. Cell Mol Gastroenterol Hepatol 5:591–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu K, Lujan R, Marmorstein A, Gabriel S, Hartzell HC (2010) Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Invest 120:1722–1735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yui S, Nakamura T, Sato T, Nemoto Y, Mizutani T, Zheng X, Ichinose S, Nagaishi T, Okamoto R, Tsuchiya K, Clevers H, Watanabe M (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18:618–623

    Article  PubMed  CAS  Google Scholar 

  • Yun CH, Oh S, Zizak M, Steplock D, Tsao S, Tse CM, Weinman EJ, Donowitz M (1997) cAMP-mediated inhibition of the epithelial brush border Na +/H + exhcanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci U S A 94:3010–3015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Wiederkehr MR, Fan LZ, Collazo R, Crowder LA, Moe OW (1999) Acute inhibition of Na/H exchanger NHE-3 by cAMP. J Biol Chem 274:3978–3987

    Article  PubMed  CAS  Google Scholar 

  • Zizak M, Lamprecht G, Steplock D, Tariq N, Shenolikar S, Donowitz M, Yun CHC, Weinman EJ (1999) cAMP-induced phosphorylation and inhibition of Na+/H+ exchanger 3 (NHE3) are dependent on the presence but not the phosphorylation of NHE regulatory factor. J Biol Chem 274:24753–24758

    Article  PubMed  CAS  Google Scholar 

  • Zomer-van Ommen DD, de Poel E, Kruisselbrink E, Oppelaar H, Vonk AM, Janssens HM, van der Ent CK, Hagemeijer MC, Beekman JM (2018) Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity. J Cyst Fibros 17:316–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Rowena Woode and Sarah Young, University of Missouri, for thoughtful review and comments on the manuscript. Supported by grants NIH R01DK048816 (LLC); Cystic Fibrosis Foundation grants CLARKE16P0, CLARKE17G0, CLARKE19XX0, DEJONG19GO, CF Foundation Therapeutics (HRdJ) and SRC011, UK-CF Trust (HRdJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lane L. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Jonge, H.R., Bijvelds, M.J.C., Strubberg, A.M., Liu, J., Clarke, L.L. (2020). Organoids as a Model for Intestinal Ion Transport Physiology. In: Hamilton, K.L., Devor, D.C. (eds) Ion Transport Across Epithelial Tissues and Disease. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-55310-4_1

Download citation

Publish with us

Policies and ethics