Skip to main content

Piecewise Polynomial Taylor Expansions—The Generalization of Faà di Bruno’s Formula

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes HPSC 2018

Abstract

We present an extension of Taylor’s Theorem for the piecewise polynomial expansion of non-smooth evaluation procedures involving absolute value operations. Evaluation procedures are computer programs of mathematical functions in closed form expression and allow a different treatment of smooth operations or calls to the absolute value function. The well known classical Theorem of Taylor defines polynomial approximations of sufficiently smooth functions and is widely used for the derivation and analysis of numerical integrators for systems of ordinary differential- or differential-algebraic equations, for the construction of solvers for continuous non-linear optimization of finite dimensional objective functions and for root solving of non-linear systems of equations. The long term goal is the stabilization and acceleration of already known methods and the derivation of new methods by incorporating piecewise polynomial Taylor expansions. The herein provided proof of the higher order approximation quality of the new generalized expansions is constructive and allows efficiently designed algorithms for the execution and computation of the piecewise polynomial expansions. As a demonstration towards the ultimate goal we will derive a prototype of a \(k\)-step method on the basis of polynomial interpolation and the proposed generalized expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    where \(b_s = h\int _0^1 y_i^{(s)}(1) + \sum _{j=1}^k \varDelta ^{(j)} y_i^{(s)}(1; \tau -1)\, \mathrm d\tau - hf(\hat{x}_1^{(s)}, \hat{x}_2^{(s)}, t_{i+1})\) holds true.

  2. 2.

    We use the phrase starting value within Pseudo-Algorithm 1 to refer to the beginning of an iteration for solving a nonlinear root problem and we use the phrase initial value as beginning of a time iteration.

References

  1. Boeck, P., Gompil, B., Griewank, A., Hasenfelder, R., Strogies, N.: Experiments with generalized midpoint and trapezoidal rules on two nonsmooth ODE’s. Mongol. Math. J. 17, 39–49 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bosse, T., Narayanan, S.H.K., Hascoet, L.: Piecewise linear AD via source transformation. Published as preprint via Argonne National Laboratory (2016)

    Google Scholar 

  3. Clees, T., Nikitin, I., Nikitina, L.: Making network solvers globally convergent. In: Obaidat, M.S., Ören, T., Merkuryev, Y. (eds.) Simulation and Modeling Methodologies, Technologies and Applications, pp. 140–153. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-69832-8_9

  4. Fiege, S., Walther, A., Griewank, A.: An algorithm for nonsmooth optimization by successive piecewise linearization. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1273-5

    Article  MATH  Google Scholar 

  5. Fiege, S., Walther, A., Kulshreshtha, K., Griewank, A.: Algorithmic differentiation for piecewise smooth functions: A case study for robust optimization. Optim. Methods Softw. 33(4–6), 1073–1088 (2018). https://doi.org/10.1080/10556788.2017.1333613

    Article  MathSciNet  MATH  Google Scholar 

  6. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation. Optim. Methods Softw. 28(6), 1139–1178 (2013). https://doi.org/10.1080/10556788.2013.796683

    Article  MathSciNet  MATH  Google Scholar 

  7. Griewank, A., Bernt, J.U., Radons, M., Streubel, T.: Solving piecewise linear systems in abs-normal form. Linear Algebra Appl. 471, 500–530 (2015). https://doi.org/10.1016/j.laa.2014.12.017

    Article  MathSciNet  MATH  Google Scholar 

  8. Griewank, A., Hasenfelder, R., Radons, M., Lehmann, L., Streubel, T.: Integrating Lipschitzian dynamical systems using piecewise algorithmic differentiation. Optim. Methods Softw. 33(4–6), 1089–1107 (2018). https://doi.org/10.1080/10556788.2017.1378653

    Article  MathSciNet  MATH  Google Scholar 

  9. Griewank, A., Streubel, T., Lehmann, L., Hasenfelder, R., Radons, M.: Piecewise linear secant approximation via algorithmic piecewise differentiation. Optim. Methods Soft. 33(4–6), 1108–1126 (2018). https://doi.org/10.1080/10556788.2017.1387256

    Article  MathSciNet  MATH  Google Scholar 

  10. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM) (2008). https://doi.org/10.1137/1.9780898717761

  11. Griewank, A., Walther, A.: First- and second-order optimality conditions for piecewise smooth objective functions. Optimization Methods and Software 31(5), 904–930 (2016). https://doi.org/10.1080/10556788.2016.1189549

    Article  MathSciNet  MATH  Google Scholar 

  12. Griewank, A., Walther, A., Fiege, S., Bosse, T.: On Lipschitz optimization based on gray-box piecewise linearization. Math. Program. 158(1), 383–415 (2016). https://doi.org/10.1007/s10107-015-0934-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, E.,  Paul Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78862-1

  14. Kubota, K.: Enumeration of subdifferentials of piecewise linear functions with abs-normal form. Optim. Methods Softw. 33(4–6), 1156–1172 (2018). https://doi.org/10.1080/10556788.2018.1458848

    Article  MathSciNet  MATH  Google Scholar 

  15. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-27555-5

  16. Leipnik, R.B., Pearce, C.E.M.: The multivariate Faá di Bruno formula and multivariate Taylor expansions with explicit integral remainder term. The ANZIAM J. 48(3), 327–341 (2007). https://doi.org/10.1017/S1446181100003527

    Article  MathSciNet  MATH  Google Scholar 

  17. Naumann, U.: The Art of Differentiating Computer Programs. Society for Industrial and Applied Mathematics (2011). http://dx.doi.org/10.1137/1.9781611972078https://doi.org/10.1137/1.9781611972078

  18. Radons, M.: Direct solution of piecewise linear systems. Theor. Comput. Sci. 626, 97–109 (2016). https://doi.org/10.1016/j.tcs.2016.02.009

  19. Radons, M.: A note on surjectivity of piecewise affine mappings. Optimization Letters (2018). https://doi.org/10.1007/s11590-018-1271-9

    Article  MATH  Google Scholar 

  20. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer Briefs in Optimization. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-4340-7

  21. Streubel, T., Griewank, A., Radons, M., Bernt, J.U.: Representation and analysis of piecewise linear functions in abs-normal form. In: Pötzsche, C., Heuberger, C., Kaltenbacher, B., Rendl, F. (eds.) System Modeling and Optimization, pp. 327–336. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45504-3_32

  22. Streubel, T., Strohm, C., Trunschke, P., Tischendorf, C.: Generic construction and efficient evaluation of flow network DAEs and their derivatives in the context of gas networks. In: Kliewer, N., Ehmke, J.F., Borndörfer, R. (eds.) Operations Research Proceedings 2017, pp. 627–632. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-89920-6_83

Download references

Acknowledgements

We want to thank Dr. Lutz Lehmann, Christian Strohm and the anonymous referees for their constructive criticism of the manuscript. Furthermore the work for the article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF) (fund number \(05\text {M}14\text {ZAM}\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Streubel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Streubel, T., Tischendorf, C., Griewank, A. (2021). Piecewise Polynomial Taylor Expansions—The Generalization of Faà di Bruno’s Formula. In: Bock, H.G., Jäger, W., Kostina, E., Phu, H.X. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-55240-4_3

Download citation

Publish with us

Policies and ethics