Skip to main content

Evolutionary and Developmental Issues of Cervical Ribs/Evolutionary Issues of Cervical Ribs

  • Chapter
  • First Online:
Thoracic Outlet Syndrome

Abstract

Ribs on the seventh cervical vertebra, so-called cervical ribs, imply a change of the highly conserved number of cervical vertebrae in mammals from seven to six. Cervical ribs are rare in the general population, but they are common in deceased fetuses and infants. There is strong, often prenatal, selection against individuals with cervical ribs and as such, cervical ribs can be seen as marker of a disturbed early embryogenesis which may include congenital abnormalities of all organ systems. The almost unavoidable association with many different abnormalities appears to be due to the high global interactivity during the embryonic patterning of the cervical vertebrae. This strong interactivity can also explain the large heterogeneity of genetic and environmental causes of cervical ribs. In other mammals cervical ribs are also associated with abnormalities. Exceptionally the slow sloths and manatees can tolerate some of these normally deleterious side-effects, which has apparently allowed them to evolve an abnormal cervical vertebral number. In long-necked reptiles and birds, there is no constraint on changes of the number of cervical vertebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McNally E, Sandin B, Wilkins RA. The ossification of the costal element of the seventh cervical vertebra with particular reference to cervical ribs. J Anat. 1990;170:125–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Narita Y, Kuratani S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool B Mol Dev Evol. 2005;304(2):91–106.

    Article  Google Scholar 

  3. Varela-Lasheras I, Bakker AJ, van der Mije SD, Metz JA, van Alphen J, Galis F. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo. 2011;2(1):11.

    Article  Google Scholar 

  4. ten Broek CM, Bakker AJ, Varela-Lasheras I, Bugiani M, Van Dongen S, Galis F. Evo-devo of the human vertebral column: on homeotic transformations, pathologies and prenatal selection. Evol Biol. 2012;39(4):456–71.

    Article  Google Scholar 

  5. Galis F, Van Dooren TJM, Feuth JD, Metz JAJ, Witkam A, Ruinard S, et al. Extreme selection in humans against homeotic transformations of cervical vertebrae. Evolution. 2006;60(12):2643–54.

    Article  Google Scholar 

  6. Schut PC, Cohen-Overbeek TE, Galis F, Ten Broek CMA, Steegers EA, Eggink AJ. Adverse fetal and neonatal outcome and an abnormal vertebral pattern: a systematic review. Obstet Gynecol Surv. 2016;71(12):741–50.

    Article  Google Scholar 

  7. Menarguez Carretero AL. M. CM. A radiologic study and the morphologic types of cervical ribs in the female. Enferm Torax. 1967;16:285–308.

    Google Scholar 

  8. Kerley P. The normal spine and pelvis. In: Shanks S, Kerley P, editors. A textbook of X-ray diagnosis by British authors. 6 bones, joints and soft tissues. London: HK Lewis; 1971.

    Google Scholar 

  9. Todd TW. The relations of the thoracic operculum considered in reference to the anatomy of cervical ribs of surgical importance. J Anat Physiol. 1911;45(Pt 3):293.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chernoff N, Rogers JM. Supernumerary ribs in developmental toxicity bioassays and in human populations: incidence and biological significance. J Toxicol Env Heal B. 2004;7(6):437–49.

    Article  CAS  Google Scholar 

  11. Merks JH, Smets AM, Van Rijn RR, Kobes J, Caron HN, Maas M, et al. Prevalence of rib anomalies in normal Caucasian children and childhood cancer patients. Eur J Med Genet. 2005;48(2):113–29.

    Article  Google Scholar 

  12. Schut PC, Brosens E, Van Dooren TJM, Galis F, Ten Broek CMA, Steegers EA, et al. Exploring copy number variants in decreased fetuses and neonates with abnormal vertebral patterns and cervical ribs. Birth Defects Res 2020;144:105027.

    Google Scholar 

  13. Etter L. Osseous abnormalities of the thoracic cage seen in forty thousand consecutive chest photoroentgenograms. Am J Roentgenol. 1944;81:359–63.

    Google Scholar 

  14. Kühne K. Die Vererbung der Variationen der menschlichen Wirbelsäule. Z Morphol Anthropol. 1932;H.1/2:1–221.

    Google Scholar 

  15. Fischel A. Untersuchungen über die Wirbelsäule und den Brustkorb des Menschen. Anatomische Hefte. 1906;31(3):462–588.

    Article  Google Scholar 

  16. Oostra RJ, Hennekam RC, de Rooij L, Moorman AF. Malformations of the axial skeleton in museum Vrolik I: homeotic transformations and numerical anomalies. Am J Med Genet A. 2005;134(3):268–81.

    Article  Google Scholar 

  17. Schumacher R, Mai A, Gutjahr P. Association of rib anomalies and malignancy in childhood. Eur J Pediatr. 1992;151(6):432–4.

    Article  CAS  Google Scholar 

  18. Galis F, Metz JA. Anti-cancer selection as a source of developmental and evolutionary constraints. BioEssays. 2003;25(11):1035–9.

    Article  CAS  Google Scholar 

  19. Galis F. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J Exp Zool. 1999;285(1):19–26.

    Google Scholar 

  20. Redenbach DM, Nelems B. A comparative study of structures comprising the thoracic outlet in 250 human cadavers and 72 surgical cases of thoracic outlet syndrome. Eur J Cardiothorac Surg. 1998;13:353–60.

    Google Scholar 

  21. Roos DB. Congenital anomalies associated with thoracic outlet syndrome. Anatomy, symptoms, diagnosis, and treatment. Am J Surg. 1976;132:771–8.

    Google Scholar 

  22. Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development. 2005;132:515–38.

    Google Scholar 

  23. Bradley OC. On a case of rudimentary first thoracic rib in a horse. J Anat Physiol. 1901;36:54–62.

    Google Scholar 

  24. Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 2010;344(1):7–15.

    Google Scholar 

  25. Vermot J, Pourquié O. Retinoic acid coordinates somitogenesis and left-right patterning in vertebrate embryos. Nature. 2005;435:215–20.

    Article  CAS  Google Scholar 

  26. Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron. 2003;40(1):65–79.

    Google Scholar 

  27. Yang X, Dormann D, Muensterberg AE, Weijer CJ. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell. 2002;3:425–37.

    Google Scholar 

  28. Galis F, Metz JA. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool. 2001 Aug 15;291(2):195–204.

    Article  CAS  Google Scholar 

  29. Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, et al. Notch signaling regulates left–right asymmetry determination by inducing nodal expression. Genes Dev. 2003;17(10):1207–12.

    Article  CAS  Google Scholar 

  30. Keeling JW, Kjaer I. Cervical ribs: useful marker of monosomy X in fetal hydrops. Pediatr Dev Pathol. 1999;2(2):119–23.

    Article  CAS  Google Scholar 

  31. Schut PC, Ten Broek CMA, Cohen-Overbeek TE, Bugiani M, Steegers EAP, Eggink AJ, et al. Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21. J Matern Fetal Neonatal Med. 2018;32:1–7.

    Google Scholar 

  32. Furtado LV, Thaker HM, Erickson LK, Shirts BH, Opitz JM. Cervical ribs are more prevalent in stillborn fetuses than in live-born infants and are strongly associated with fetal aneuploidy. Pediatr Dev Pathol. 2011;14(6):431–7.

    Google Scholar 

  33. Wéry N, Narotsky MG, Pacico N, Kavlock RJ, Picard JJ, Gofflot F. Defects in cervical vertebrae in boric acid-exposed rat embryos are associated with anterior shifts of Hox gene expression domains. Birth Defects Res A Clin Mol Teratol. 2003;67(1):59–67.

    Google Scholar 

  34. Rengasamy P, Padmanabhan RR. Experimental studies on cervical and lumbar ribs in mouse embryos. Congenit Anom (Kyoto). 2004;44:156–71.

    Google Scholar 

  35. Connely LE, Rogers JM. Methanol causes posteriorization of cervical vertebrae in mice. Teratology. 1197;55:138–44.

    Google Scholar 

  36. Brocal J, De Decker S, José-López R, Manzanilla EG, Penderis J, Stalin C, et al. C7 vertebra homeotic transformation in domestic dogs–are pug dogs breaking mammalian evolutionary constraints? J Anat. 2018;233(2):255–65.

    Google Scholar 

  37. Van der Geer AE. High incidence of cervical ribs indicates vulnerable condition in late Pleistocene woolly rhinoceroses. PeerJ. 2017;5:e3684.

    Google Scholar 

  38. Palma A, Carini F. Variazioni dell’apofisi trasversa della settima vertebra cervicale: studio anatomo-radiologico su una popolazione “segregata”. Arch Ital Anat Embriol. 1990;95:11–6.

    Google Scholar 

  39. Galis F, Carrier DR, van Alphen J, van der Mije SD, Van Dooren TJM, Metz JAJ, et al. Fast running restricts evolutionary change of the vertebral column in mammals. Proc Natl Acad Sci. 2014;111(31):11401–6.

    Google Scholar 

  40. Damur-Djuric N, Steffen F, Hässig M, Morgan J, Flückiger M. Lumbosacral transitional vertebrae in dogs: classification, prevalence, and association with sacroiliac morphology. Vet Radiol Ultrasound. 2006;47(1):32–8.

    Google Scholar 

  41. Slijper EJ. Die Cetaceen: Vergleichend-Anatomisch und Systematisch. The Netherlands: Martinus Nijhoff, ‘s Gravenhage; 1962.

    Google Scholar 

  42. Nagy J, Victor E, Cropper J. Why don’t all whales have cancer? A novel hypothesis resolving Peto’s paradox. J Integr Comp Biol. 2007;47:317–28.

    Google Scholar 

  43. Woolfenden GE. Postcranial osteology of the waterfowl. Bull Florida State Museum Biol Sci. 1961;6:1–129.

    Google Scholar 

  44. Hofstetter R, Gasc J. Vertebrae and ribs of modern reptiles. In: Gans C, AdA B, Parsons TS, editors. Biology of the reptilia, vol. 1. London and New York: Academic; 1969. p. 202–310.

    Google Scholar 

  45. Forbes LS. The evolutionary biology of spontaneous abortion in humans. Trends Ecol Evol. 1997;12(11):446–50.

    Article  CAS  Google Scholar 

  46. Rogers JM, Mole ML, Chernoff N, Barbee BD, Turner CI, Logsdon TR, et al. The developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose—response modeling for estimation of benchmark doses. Teratology. 1993;47(3):175–88.

    Article  CAS  Google Scholar 

  47. Basu MN, Johnsen IBG, Wehberg S, Sørensen RG, Barington T, Nørgård BM. Causes of death among full term stillbirths and early neonatal deaths in the region of southern Denmark. J Perinat Med. 2018;46(2):197–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frietson Galis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galis, F., Schut, P.C., Cohen-Overbeek, T.E., ten Broek, C.M.A. (2021). Evolutionary and Developmental Issues of Cervical Ribs/Evolutionary Issues of Cervical Ribs. In: Illig, K.A., et al. Thoracic Outlet Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-55073-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55073-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55072-1

  • Online ISBN: 978-3-030-55073-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics