Skip to main content

Oceans and Rapid Climate Change

  • Chapter
  • First Online:
From Hurricanes to Epidemics

Part of the book series: Global Perspectives on Health Geography ((GPHG))

Abstract

A key component of global ocean circulation, the Atlantic Meridional Overturning Circulation (AMOC), is believed to play an important role in abrupt climate changes, both in the past and potentially in the future. As a nonlinear system, the AMOC has multiple equilibrium states characterized by different AMOC strengths, and it has been hypothesized that past abrupt climate changes, including the warm Dansgaard-Oeschger and cold Heinrich events, were related to the transition between such states. The question arises whether an abrupt climate change caused by the AMOC shift could also occur in the future as a result of anthropogenic global warming. Answering this question is complicated by the fact that state-of-the-art coupled climate models typically simulate a mono-stable AMOC for modern climate conditions, which contradicts observationally based indicators suggesting that the AMOC may be bi-stable (i.e., having two stable equilibria). This stability bias is largely due to a common model bias in tropical precipitation—the double Intertropical Convergence Zone problem distorting the Atlantic freshwater budget. After correcting this bias, we find that the AMOC can rapidly weaken and then collapse in experiments with CO2 doubling, which suggests that the risk of AMOC shutdown in the future should not be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Broecker, W. S. (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.

    Article  Google Scholar 

  2. Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I., Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H. L., & McCarthy, G. D. (2018). The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters, 45, 1527–1533.

    Article  Google Scholar 

  3. Srokosz, M. A., & Bryden, H. L. (2015). Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348, 1255575.

    Article  Google Scholar 

  4. Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J. V., & Wood, R. A. (2015). Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45, 3299–3316.

    Article  Google Scholar 

  5. Zhang, R., & Delworth, T. L. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853–1860.

    Article  Google Scholar 

  6. Schuster, U., & Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.

    Article  Google Scholar 

  7. Yan, X., Zhang, R., & Knutson, T. R. (2017). The role of Atlantic overturning circulation in the recent decline of Atlantic major hurricane frequency. Nature Communications, 8, 1695.

    Article  Google Scholar 

  8. Schmittner, A. (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.

    Article  Google Scholar 

  9. Timmermann, A., Okumura, Y., An, S., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20, 4899–4919.

    Article  Google Scholar 

  10. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdottir, A. E., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 383, 218–220.

    Article  Google Scholar 

  11. Clark, P., Pisias, N., Stocher, T., & Weaver, A. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 451, 863–869.

    Article  Google Scholar 

  12. Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., & Cheng, J. (2009). Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310–314.

    Article  Google Scholar 

  13. Hughen, K. A., Overpeck, J. T., Peterson, L. C., & Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 51–54.

    Article  Google Scholar 

  14. Stocker, T. F., & Johnsen, S. J. (2003). A minimum thermodynamic model for the bipolar seesaw. Paleoceanography, 18, 1087.

    Article  Google Scholar 

  15. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B., & Bender, M. L. (1998). Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature, 391, 141–146.

    Article  Google Scholar 

  16. EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444, 195–198.

    Article  Google Scholar 

  17. WAIS Divide Project Members. (2015). Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665.

    Article  Google Scholar 

  18. Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53.

    Article  Google Scholar 

  19. Liu, W., & Hu, A. (2015). The role of the PMOC in modulating the deglacial shift of the ITCZ. Climate Dynamics, 45, 3019–3034.

    Article  Google Scholar 

  20. Crowley, T. (1992). North Atlantic deepwater cools the southern hemisphere. Paleoceanography, 7, 489–497.

    Article  Google Scholar 

  21. Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Science, 9, 83–104.

    Article  Google Scholar 

  22. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J., & Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366, 552–554.

    Article  Google Scholar 

  23. Broecker, W. S., Peteet, D., & Rind, D. (1985). Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 21–26.

    Article  Google Scholar 

  24. Ganopolski, A., & Rahmstorf, S. (2001). Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409, 153–158.

    Article  Google Scholar 

  25. Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A “kicked” salt oscillator in the Atlantic. Geophysical Research Letters, 41, 7306–7313.

    Article  Google Scholar 

  26. Sévellec, F., & Fedorov, A. V. (2015). Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth and Planetary Science Letters, 429, 60–68.

    Article  Google Scholar 

  27. Sarnthein, M., Winn, K., Jung, S., Duplessy, J., Labeyrie, L., Erlenkeuser, H., & Ganssen, G. (1994). Changes in East Atlantic Deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9, 209–267.

    Article  Google Scholar 

  28. Lynch-Stieglitz, J., Schmidt, M. W., Henry, L. G., Curry, W. B., Skinner, L. C., Mulitza, S., Zhang, R., & Chang, P. (2014). Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7, 144–150.

    Article  Google Scholar 

  29. McManus, J., Francois, R., Gherardi, J., Keigwin, L., & Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834–837.

    Article  Google Scholar 

  30. Clark, P. U., Alley, R., Keigwin, L., Licciardi, J., Johnsen, S., & Wang, H. (1996). Origin of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 11, 563–577.

    Article  Google Scholar 

  31. Rahmstorf, S., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480.

    Article  Google Scholar 

  32. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.

    Google Scholar 

  33. Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13, 224–230.

    Article  Google Scholar 

  34. Rooth, C. (1982). Hydrology and ocean circulation. Progress in Oceanography, 11, 131–149.

    Article  Google Scholar 

  35. Weijer W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. Journal of Geophysical Research, in press. https://doi.org/10.1029/2019JC015083

  36. Sévellec, F., & Fedorov, A. V. (2014). Millennial variability in an idealized ocean model: Predicting the AMOC regime shifts. Journal of Climate, 27, 3551–3564.

    Article  Google Scholar 

  37. Stocker, T. F., & Wright, D. G. (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729–732.

    Article  Google Scholar 

  38. Sévellec, F., & Fedorov, A. V. (2011). Stability of the Atlantic meridional overturning circulation and stratification in a zonally averaged ocean model: Effects of freshwater flux, Southern Ocean winds, and diapycnal diffusion. Deep Sea Research, 58, 1927–1943.

    Article  Google Scholar 

  39. Bryan, F. (1986). High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301–304.

    Article  Google Scholar 

  40. Marotzke, J. P., & Willebrand, J. (1991). Multiple equilibria of the global thermohaline circulation. Journal of Physical Oceanography, 21, 1372–1385.

    Article  Google Scholar 

  41. Power, S., & Kleeman, R. (1993). Multiple equilibria in a global ocean general circulation model. Journal of Physical Oceanography, 23, 1670–1681.

    Article  Google Scholar 

  42. Hughes, T. M., & Weaver, A. J. (1994). Multiple equilibria of an asymmetric two-basin ocean model. Journal of Physical Oceanography, 24, 619–637.

    Article  Google Scholar 

  43. Knorr, G., & Lohmann, G. (2003). Southern Ocean origin for the resumption of the Atlantic thermohaline circulation during deglaciation. Nature, 424, 532–536.

    Article  Google Scholar 

  44. Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean–atmosphere model. Journal of Climate, 1, 841–866.

    Article  Google Scholar 

  45. Yin, J., & Stouffer, R. J. (2007). Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. Journal of Climate, 20, 4293–4315.

    Article  Google Scholar 

  46. Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., & De Cuevas, B. (2011). Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophysical Research Letters, 38, L10605.

    Google Scholar 

  47. Hu, A., Meehl, G. A., Han, W., Timmermann, A., Otto-Bliesner, B., Liu, Z., Washington, W. M., Large, W., Abe-Ouchi, A., Kimoto, M., Lambeck, K., & Wu, B. (2012). Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences, 109, 6417–6422.

    Article  Google Scholar 

  48. Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., & Hu, A. (2006). Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19, 1365–1387.

    Article  Google Scholar 

  49. Manabe, S., & Stouffer, R. J. (1999). Are two modes of thermohaline circulation stable? Tellus A, 51A(3), 400–411.

    Article  Google Scholar 

  50. Prange, M., Lohmann, G., & Paul, A. (2003). Influence of vertical mixing on the thermohaline hysteresis: Analysis of an OGCM. Journal of Physical Oceanography, 33, 1707–1721.

    Article  Google Scholar 

  51. Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24, 1911–1920.

    Article  Google Scholar 

  52. Timmermann, A., Gildor, H., Schulz, M., & Tziperman, E. (2003). Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. Journal of Climate, 16, 2569–2585.

    Article  Google Scholar 

  53. Mikolajewicz, U. (1996). A meltwater induced collapse of the thermohaline circulation and its influence on the oceanic distribution of 614C and 618O. Max-Planck-Institue fur Meteorologie Rep. 189, 25 pp.

    Google Scholar 

  54. Arzel, O., England, M. H., & Sijp, W. P. (2008). Reduced stability of the Atlantic meridional overturning circulation due to wind stress feedback during glacial times. Journal of Climate, 21, 6260–6282.

    Article  Google Scholar 

  55. Rahmstorf, S. (1996). On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics, 12, 799–811.

    Article  Google Scholar 

  56. de Vries, P., & Weber, S. L. (2005). The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophysical Research Letters, 32, L09606. https://doi.org/10.1029/2004GL021450.

    Article  Google Scholar 

  57. Dijkstra, H. A. (2007). Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695–705.

    Article  Google Scholar 

  58. Liu, W., & Liu, Z. (2013). A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. Journal of Climate, 26, 1926–1938.

    Article  Google Scholar 

  59. Liu, W., & Liu, Z. (2014). A note on the stability indicator of the Atlantic meridional overturning circulation. Journal of Climate, 27, 969–975.

    Article  Google Scholar 

  60. Liu, W., Liu, Z., & Hu, A. (2013). The stability of an evolving Atlantic meridional over- turning circulation. Geophysical Research Letters, 40, 1562–1568.

    Article  Google Scholar 

  61. Liu, W., Liu, Z., & Brady, E. (2014). Why is the AMOC mono-stable in coupled general circulation models? Journal of Climate, 27, 2427–2443.

    Article  Google Scholar 

  62. Liu, W., Xie, S.-P., Liu, Z., & Zhu, J. (2017). Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Science Advances, 3, e1601666.

    Article  Google Scholar 

  63. Liu, W., Liu, Z., Cheng, J., & Hu, H. (2015). On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Climate Dynamics, 44, 1257–1275.

    Article  Google Scholar 

  64. Mechoso, C. R., et al. (1995). The seasonal cycle over the tropical pacific in general circulation models. Monthly Weather Review, 123, 2825–2838.

    Article  Google Scholar 

  65. Lin, J.-L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. Journal of Climate, 20, 4497–4525.

    Article  Google Scholar 

  66. Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., & Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophysical Research Letters, 39, L20709. https://doi.org/10.1029/2012GL053763.

    Article  Google Scholar 

  67. Sévellec, F., Fedorov, A. V., & Liu, W. (2017). Arctic Sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7, 604–610.

    Article  Google Scholar 

  68. Liu, W., Fedorov, A., & Sévellec, F. (2019). The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. Journal of Climate, 32(531), 977–996.

    Article  Google Scholar 

  69. van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P. K., Noel, B. P. Y., Berg, W. J., Meijgaard, E., & Wouters, B. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946.

    Article  Google Scholar 

  70. Fettweis, X., Franco, B., Tedesco, M., Angelen, J. H., Lenaerts, J. T. M., Broeke, M. R., Gallée, H., Angelen, J. H., & Gall, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 289–469.

    Google Scholar 

  71. Bakker, P., Schmittner, A., Lenaerts, J. T. M., Abe-Ouchi, A., Bi, D., van den Broeke, M. R., Chan, W. L., Hu, A., Beadling, R. L., Marsland, S. J., & Mernild, S. H. (2016). Fate of the Atlantic meridional overturning circulation: Strong decline under continued warming and Greenland melting. Geophysical Research Letters, 43, 12252–12260.

    Article  Google Scholar 

  72. Stocker, T. F., Dahe, Q., & Plattner, G. (2013). Working group I contribution to the IPCC fifth assessment report (AR5), climate change 2013: The physical science basis. Geneva: IPCC.

    Google Scholar 

  73. Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., & Wunsch, C. (2015). ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscientific Model Development, 8, 3071–3104.

    Article  Google Scholar 

  74. GISTEMP Team. (2019). GISS surface temperature analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 20YY-MM-DD at https://data.giss.nasa.gov/gistemp/.

  75. Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, R., Mysak, L. A., Wang, Z., & Weaver, A. J. (2005). Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 32, L23605. https://doi.org/10.1029/2005GL023655.

    Article  Google Scholar 

  76. Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F., Hiscott, R. N., & Aksu, A. E. (2001). Derivation of d18O from sediment core log data: Implications for millennial-scale climate change in the Labrador Sea. Paleoceanography, 16, 503–559.

    Article  Google Scholar 

  77. Lippold, J., GrĂĽtzner, J., Winter, D., Lahaye, Y., Mangini, A., & Christl, M. (2009). Does sedimentary 231Pa/230Th from the Bermuda rise monitor past Atlantic meridional Overturnin g circulation? Geophysical Research Letters, 36, L12601.

    Article  Google Scholar 

  78. Henry, L. G., McManus, J. F., Curry, W. B., Roberts, N. L., Piotrowski, A. M., & Keigwin, L. D. (2016). North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science, 353, 470–474.

    Article  Google Scholar 

Download references

Acknowledgment

WL has been supported by grants from the Regents’ Faculty Fellowship and Sloan Research Fellowship. AVF has been supported by grants from the US National Science Foundation (OCE-1756682 and OPP-1741847), the Guggenheim fellowship, and ARCHANGE project of CNRS, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, W., Fedorov, A. (2021). Oceans and Rapid Climate Change. In: Conrad, K. (eds) From Hurricanes to Epidemics. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-55012-7_6

Download citation

Publish with us

Policies and ethics