Skip to main content

Exploring Human Behaviour in Cyber-Physical Systems with Multi-modelling and Co-simulation

  • Conference paper
  • First Online:
Formal Methods. FM 2019 International Workshops (FM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12233))

Included in the following conference series:

Abstract

Definitions of cyber-physical systems often include humans within the system boundary, however design techniques often focus on the technical aspects and ignore this important part of the system. Multi-modelling and co-simulation offer a way to bring together models from different disciplines to capture better the behaviours of the overall system. In this paper we present some initial results of incorporating ergonomic models of human behaviours within a cyber-physical multi-model. We present three case studies, from the autonomous aircraft and railway sectors, including initial experiments, and discuss future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fmi-standard.org/tools/.

  2. 2.

    http://overturetool.org/.

  3. 3.

    http://www.20sim.com/.

  4. 4.

    See also Golightly et al. [13] which is aimed at an ergonomics audience.

  5. 5.

    See also Golightly et al. [14] which is aimed at an urban rail audience.

References

  1. Alfredson, J., Johansson, B., Gonzaga Trabasso, L., Schminder, J., Granlund, R., GĂĄrdhagen, R.: Design of a distributed human factors laboratory for future airsystems. In: Proceedings of the ICAS Congress. International Council of the Aeronautical Sciences (2018)

    Google Scholar 

  2. Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

    Article  Google Scholar 

  3. Beckmann-Dobrev, B., Kind, S., Stark, R.: Hybrid simulators for product service-systems: innovation potential demonstrated on urban bike mobility. Procedia CIRP 36, 78–82 (2015). 25th CIRP Design Conference on Innovative Product Creation

    Article  Google Scholar 

  4. Blanchonette, P.: Jack human modelling tool: a review. Technical report DSTO-TR-2364, Defence Science and Technology Organisation (Australia) Air Operations Division (2010)

    Google Scholar 

  5. Chapman, J., Siebers, P.O., Robinson, D.: On the multi-agent stochastic simulation of occupants in buildings. J. Build. Perform. Simul. 11(5), 604–621 (2018)

    Article  Google Scholar 

  6. Cummings, M., Nehme, E.C.: Modeling the impact of workload in network centric supervisory control settings. In: Steinberg, R., Kornguth, S., Matthews, M.D. (eds.) Neurocognitive and Physiological Factors During High-Tempo Operations, chap. 3, pp. 23–40. Taylor & Francis, Abingdon (2010)

    Google Scholar 

  7. Cummings, M., Guerlain, S.: Developing operator capacity estimates for supervisory control of autonomous vehicles. Hum. Factors 49(1), 1–15 (2007)

    Article  Google Scholar 

  8. Filippi, S., Barattin, D.: In-depth analysis of non-deterministic aspects of human-machine interaction and update of dedicated functional mock-ups. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 185–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_19

    Chapter  Google Scholar 

  9. Fitzgerald, J., Gamble, C., Payne, R., Larsen, P.G., Basagiannis, S., Mady, A.E.D.: Collaborative Model-based Systems Engineering for Cyber-Physical Systems - a Case Study in Building Automation. In: Proceedings of INCOSE International Symposium on Systems Engineering. Edinburgh, Scotland (July 2016)

    Google Scholar 

  10. Flach, J.M.: Complexity: learning to muddle through. Cogn. Technol. Work 14(3), 187–197 (2012)

    Article  Google Scholar 

  11. Flammini, F., Pragliola, C., Smarra, G.: Railway infrastructure monitoring by drones. In: 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), pp. 1–6 (2016)

    Google Scholar 

  12. Foldager, F.F., Larsen, P.G., Green, O.: Development of a driverless lawn mower using co-simulation. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 330–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_23

    Chapter  Google Scholar 

  13. Golightly, D., Gamble, C., PalacĂ­n, R., Pierce, K.: Applying ergonomics within the multi-modelling paradigm with an example from multiple UAV control. Ergonomics (2019, to appear)

    Google Scholar 

  14. Golightly, D., Gamble, C., PalacĂ­n, R., Pierce, K.: Multi-modelling for decarbonisation in urban rail systems. Urban Rail Transit (2019, submitted)

    Google Scholar 

  15. Golightly, D., Wilson, J.R., Lowe, E., Sharples, S.: The role of situation awareness for understanding signalling and control in rail operations. Theor. Issues Ergon. Sci. 11(1–2), 84–98 (2010)

    Article  Google Scholar 

  16. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018)

    Article  Google Scholar 

  17. Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive Systems Engineering, 1st edn. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  18. Huang, L., Cummings, M.L., Nneji, V.C.: Preliminary analysis and simulation of railroad dispatcher workload. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 62(1), 691–695 (2018)

    Article  Google Scholar 

  19. Humann, J., Spero, E.: Modeling and simulation of multi-UAV, multi-operator surveillance systems. In: Annual IEEE International Systems Conference (SysCon 2018), pp. 1–8 (2018)

    Google Scholar 

  20. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and surveillance. In: 2016 IEEE Conference on Control Applications (CCA), pp. 1–8 (2016)

    Google Scholar 

  21. Larsen, P.G., Fitzgerald, J., Woodcock, J., Gamble, C., Payne, R., Pierce, K.: Features of integrated model-based co-modelling and co-simulation technology. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 377–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_26

    Chapter  Google Scholar 

  22. Larsen, P.G., et al.: VDM-10 language manual. Technical report TR-001, The Overture Initiative, April 2013. www.overturetool.org

  23. Laughery Jr., K.R., Lebiere, C., Archer, S.: Modeling human performance in complex systems, chap. 36, pp. 965–996. Wiley (2006)

    Google Scholar 

  24. Leclerc, T., Siebert, J., Chevrier, V., Ciarletta, L., Festor, O.: Multi-modeling and co-simulation-based mobile ubiquitous protocols and services development and assessment. In: Sénac, P., Ott, M., Seneviratne, A. (eds.) MobiQuitous 2010. LNICST, vol. 73, pp. 273–284. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29154-8_23

    Chapter  Google Scholar 

  25. Lee, E.A.: Cyber physical systems: design challenges. Technical report UCB/EECS-2008-8, EECS Department, University of California, Berkeley, January 2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html

  26. Li, C., Mahadevan, S., Ling, Y., Choze, S., Wang, L.: Dynamic Bayesian network for aircraft wing halth monitoring digital twin. AIAA J. 55(3), 930–941 (2017)

    Article  Google Scholar 

  27. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction. Hum. Comput. Interact. 7(1), 91–139 (1992)

    Article  Google Scholar 

  28. de Mattos, D.L., Neto, R.A., Merino, E.A.D., Forcellini, F.A.: Simulating the influence of physical overload on assembly line performance: a case study in an automotive electrical component plant. Appl. Ergon. 79, 107–121 (2019)

    Article  Google Scholar 

  29. Metzmacher, H., Wölki, D., Schmidt, C., Frisch, J., van Treeck, C.A.: Real-time assessment of human thermal comfort using image recognition in conjunction with a detailed numerical human model. In: 15th International Building Simulation Conference, pp. 691–700 (2017)

    Google Scholar 

  30. Neghina, M., Zamrescu, C.B., Larsen, P.G., Lausdahl, K., Pierce, K.: Multi-paradigm discrete-event modelling and co-simulation of cyber-physical systems. Stud. Inf. Control 27(1), 33–42 (2018)

    Google Scholar 

  31. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)

    Google Scholar 

  32. Nneji, V.C., Cummings, M.L., Stimpson, A.J.: Predicting locomotive crew performance in rail operations with human and automation assistance. IEEE Tran. Hum. Mach. Syst. 49(3), 250–258 (2019)

    Article  Google Scholar 

  33. Palmieri, M., Bernardeschi, C., Masci, P.: A flexible framework for FMI-based co-simulation of human-centred cyber-physical systems. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 21–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_2

    Chapter  Google Scholar 

  34. Pelechano, N., Malkawi, A.: Evacuation simulation models: challenges in modeling high rise building evacuation with cellular automata approaches. Autom. Constr. 17(4), 377–385 (2008)

    Article  Google Scholar 

  35. Powell, J., Palacín, R.: A comparison of modelled and real-life driving profiles for the simulation of railway vehicle operation. Transp. Plan. Technol. 38(1), 78–93 (2015)

    Article  Google Scholar 

  36. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 731–736 (2010)

    Google Scholar 

  37. Teal, S.L., Rudnicky, A.I.: A performance model of system delay and user strategy selection. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 295–305. ACM (1992)

    Google Scholar 

  38. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: The INTO-CPS CO-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019). http://www.sciencedirect.com/science/article/pii/S1569190X1830193X

  39. Verhoef, M., Larsen, P.G.: Enhancing VDM++ for modeling distributed embedded real-time systems. Technical report, Radboud University Nijmegen, March 2006. A preliminary version of this report is available on-line at http://www.cs.ru.nl/~marcelv/vdm/

  40. Vilim, R., Thomas, K.: Operator support technologies for fault tolerance and resilience. In: Advanced Sensors and Instrumentation Newsletter, pp. 1–4. U.S. Department for Energy (2016)

    Google Scholar 

  41. Wickens, C.D., Gutzwiller, R.S., Vieane, A., Clegg, B.A., Sebok, A., Janes, J.: Time sharing between robotics and process control: validating a model of attention switching. Hum. Factors 58(2), 322–343 (2016)

    Article  Google Scholar 

  42. Zervakis, G., Pierce, K., Gamble, C.: Multi-modelling of Cooperative Swarms. In: Pierce, K., Verhoef, M. (eds.) The 16th Overture Workshop, pp. 57–70. Newcastle University, School of Computing, Oxford, July 2018. TR-1524

    Google Scholar 

Download references

Acknowledgements

The work reported here is supported in part by the Rail Safety and Standard Board (RSSB) project “Digital Environment for Collaborative Intelligent De-carbonisation” (DECIDe, reference number COF-IPS-06). The authors wish to thank the anonymous reviewers of both the workshop and extended version of this paper for their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Pierce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pierce, K., Gamble, C., Golightly, D., PalacĂ­n, R. (2020). Exploring Human Behaviour in Cyber-Physical Systems with Multi-modelling and Co-simulation. In: Sekerinski, E., et al. Formal Methods. FM 2019 International Workshops. FM 2019. Lecture Notes in Computer Science(), vol 12233. Springer, Cham. https://doi.org/10.1007/978-3-030-54997-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54997-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54996-1

  • Online ISBN: 978-3-030-54997-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics