Skip to main content

Mathematical Simulation for Forecasting an Uneven Distribution of the Stressed-Strain State of Metal When Expanding Large-Diameter Pipes

  • Conference paper
  • First Online:
Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020) (ICIE 2021)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 752 Accesses

Abstract

It is known that the pipe shell expanding process features a highly uneven distribution of tangential strains along its contour. The level of this strain in the entire volume of the pipe determines the ability to achieve a stable geometry of critical products, whereas the processes occurring in the end sections of the pipe determine the quality of butt welding in the main pipe, and the entire system reliability. By joint solution of a system of differential equilibrium and plasticity conditions equations, in relation to the plain strain pattern, we obtained equations reflecting the nature of the stress–strain state (SSS) distribution along the contour of the deformable body. These equations take into account the presence of contact friction between the deformable body and rigid segments, as well as expanding of gaps with radial movement of segments. We suggested a quantitative criterion for uneven distribution of SSS parameters during the expanding process. The paper demonstrates the possibility of using dimensionless criteria or relative indicators of uneven SSS distribution along the pipe contour. For this purpose, we adopted stress and strain values in the area opposite to the segment symmetry axis as the basic values. The paper presents the results of finite-element simulation of the process of expanding pipes with a diameter of ϕ1420 mm, obtained in the QForm VX8 software package. This data correlates well with the results of mathematical simulation of this process and its physical model. The established adequacy of the obtained equations gives reason to use them for predicting the distribution of SSS parameters when implementing the manufacture of a new product or when choosing a new calibration mode. As an example, we demonstrated the relationship of the maximum unevenness deformation indicators for a specific pipe during its calibration with the number of the expander head segments and various friction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skripalenko MM, Bazhenov VE, Romantsev BA, Skripalenko MN, Koltygin AV, Sidorov AA (2014) Komp’yuternoye modelirovaniye skvoznykh tekhnologicheskikh protsessov proizvodstva metalloproduktsii (Computer modeling of end-to-end technological processes for the production of metal products). Metallurgist 58(1–2):86–90

    Article  Google Scholar 

  2. Yefremov DB, Belyayev PV, Kirichenko IS, Fodorova EN, Shkretov IA, Frolov EA, Sukhov EA (2017) Nekotoryye primery ispol’zovaniya programmnogo kompleksa QForm v NITU “MISiS” i v yego Vyksunskom filiale (Some examples of using the QForm software package at NUST MISiS and Vyksa branch). Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem 2:29–33

    Google Scholar 

  3. Yefremov DB, Gerasimova AA, Gorbatyuk SM, Chichenev NA (2019) Study of kinematics of elastic-plastic deformation for hollow steel shapes used in energy absorption devices. Iron Steel Rev 18:30–34

    Article  Google Scholar 

  4. Frunkin DB, Gurevich LM, Permyakov IL, Platonov MO, Bannikov AI, Novikov RE (2016) Modelirovaniye protsessa ekspandirovaniya svarnykh pryamoshovnykh trub bol’shogo diametra, proizvodimykh na AO “volzhskiy trubnyy zavod” (Process modeling of expansion of longitudinal welded large-diameter pipes, produced by JSC “Volzhsky Pipe Plant”). Izvestiya volgogradskogo gosudarstvennogo tekhnicheskogo universiteta 15(194):52–59

    Google Scholar 

  5. Gorbatyuk SM, Kondratenko V, Sedykh L (2018) Tool stability analysis for deep hole drilling. In: MATEC web of conferences, vol 224, pp 01035. https://doi.org/10.1051/matecconf/201822401035

  6. Fan Lifeng, Gao Ying, Yan Jiaxin, Yun Jianbin (2014) Deformation characteristic analysis on me-chanical expanding of large diameter welding pipe. Appl Mech Mater 623:125–128

    Article  Google Scholar 

  7. Samusev SV, Aleshchenko AS, Fadeev VA (2018) Simulation of the process of continuous forming of straight-seam welded pipes on the basis of “Tesa 10-50 trainer”. Izv Ferrous Metall 61(5):378–384

    Article  Google Scholar 

  8. Xiao S, Zha C (2008) Investigation on the key technologies of mechanical expanding of large diameter LSAW pipe. Mater Sci Forum 575–578:472–477

    Article  Google Scholar 

  9. Samusev SV, Romantsov VA, Zhigunov KL, Boldt VV, Sigida MS (2011) Development of technological modes portion forming billets in TESA 1420 line of OJSC “Chelybinsk tube Rolling Plant”. Proizvodstvoprokata 10:20–28

    Google Scholar 

  10. Samusev SV, Zhigulev GP, Fadeev VA, Monfhov KS (2016) Simulation of the process of forming billets on specialized roll forming installation. Math Univ Ferrous Metall 59(3):154–157

    Google Scholar 

  11. Kolikov AP, Zvonarev DU, Taupek IM, Sidorova TU (2017) Mathematical simulation of strip plastic deformation process in the whole technological stage of manufacture of large-diameter tubes. Chernye Metally 7:41–45

    Google Scholar 

  12. Samusev SV, Tovmasyan MA (2017) Development of determining methods for the parameters of billets at edge bending on the tesa 1420. Izv Ferrous Metall 60(3):187–191

    Article  Google Scholar 

  13. Gerasimova A, Gorbatyuk S, Efremov D (2020) Modeling of tool for cold extrusion of steel and tooling with proportional bandaging. Trans Tech Publ Ltd Switz Solid State Phenom 299:513–517

    Article  Google Scholar 

  14. Zarapin AU, Shur AI, Chichenev NA (1999) Improvement of the unit for rolling aluminum strip clad with corrosion-resistant steel. Steel Transl 29:69–71

    Google Scholar 

  15. Gorbatyuk SM, Pavlov VM, Shapoval AN et al (1998) Experimental use of rotary rolling mills to deform compacts of refractory metals. Metallurgist 42:178–183

    Article  Google Scholar 

  16. Gorbatyuk SM, Morozova IG, Naumova MG (2016) Color mark formation on a metal surface by a highly concentrated energy source. Metallurgist 60(5–6):646–650. https://doi.org/10.1007/s11015-016-0345-0

    Article  Google Scholar 

  17. Gorbatyuk SM, Sedykh LV (2010) Improving the durability of rolling-mill rolls. Metallurgist 54(5–6):299–301

    Article  Google Scholar 

  18. Busygin AM (2020) Cabled feeder for underground drilling machines. Lect Notes Mech Eng 231–237. https://doi.org/10.1007/978-3-030-22041-9_27

  19. Busygin AM (2018) The force analysis of the caterpillar excavator stick arrangement mechanism with three degrees of freedom. Min Inf Anal Bull 1:133–142

    Article  Google Scholar 

  20. Zakharov AN, Gorbatyuk SM, Borisevich VG (2008) Modernizing a press for making refractories. Metallurgist 52(7–8):420–423. https://doi.org/10.1007/s11015-008-9072-5

    Article  Google Scholar 

  21. Bast J, Gorbatyuk SM, Kryukov IY (2011) Horizontal hcc-12000 unit for the continuous casting of semifinished products. Metallurgist 55(1–2):116–118. https://doi.org/10.1007/s11015-011-9399-1

    Article  Google Scholar 

  22. Slobodyanik TM, Balakhnina EE (2019) Dynamics of elementary differential composed of elastic bodies. Min Inf Anal Bull 9:204–210. https://doi.org/10.25018/0236-1493-2019-09-0-204-210

    Article  Google Scholar 

  23. Slobodyanik TM, Balakhnina EE (2020) Dynamic analysis of elementary differential gear with rigid links. IOP Conf Ser Mater Sci Eng 709(2):033066. https://doi.org/10.1088/1757-899X/709/3/033066

    Article  Google Scholar 

  24. Bardovsky AD, Gerasimova AA, Basyrov II (2019) Study of oscillating process of harp screens. Lect Notes Mech Eng 133–139. https://doi.org/10.1007/978-3-319-95630-5_14

  25. Naumova M, Basyrov I, Aliev K (2018) Reengineering of the ore preparation production process in the context of “Almalyk MMC” JSC. MATEC Web Conf 224:01030

    Article  Google Scholar 

  26. Naumova MG, Morozova IG, Zarapin AY, Borisov PV (2018) Copper alloy marking by altering its surface topology using laser heat treatment. Metallurgist 62(5–6):464–469. https://doi.org/10.1007/s11015-018-0682-2

    Article  Google Scholar 

  27. Chichenev NA (2015) Import-replacing re-engineering of the drive of the rollers in the intermediate roller table of a continuous bloom caster. Metallurgist 58(9–10):892–895. https://doi.org/10.1007/s11015-015-0013-9

    Article  Google Scholar 

  28. Mazhirin EA, Chichenev NA, Zadorozhnyi VD (2008) Modernizing the track units of the 2800 thick-sheet mill at OAO ural’skaya stal. Steel Transl 38(12):1048–1050. https://doi.org/10.3103/S0967091208120255

    Article  Google Scholar 

  29. Markov O, Gerasimenko O, Aliieva L, Shapoval A (2019) Development of the metal rheology model of high-temperature deformation for modeling by finite element method. EUREKA Phys Eng 2:52–60

    Article  Google Scholar 

  30. Gorbatyuk SM, Pavlov SM, Shapoval AN (1998) Experience in application of screw rolling mill for deforming the billets of refractory metals. Metallurg 5:32–35

    Google Scholar 

  31. Storozhev MV, Popov EA (1977) Teoriya obrabotki metallov davleniyem: ucheb. dlya vuzov (Theory of metal forming: textbook. for universities). Mashinostroyeniye, Moscow

    Google Scholar 

  32. Feodos’yev VI (1986) Soprotivleniye materialov: ucheb. dlya vuzov (Resistance of materials: textbook. for universities). Nauka, Moscow

    Google Scholar 

  33. Ilyushin AA (2014) Continuum mechanics. Publishing House LENAND, Moscow

    Google Scholar 

  34. Dragobetskii V, Zagirnyak M, Naumova O, Shlyk S, Shapoval A (2018) Method of determination of technological durability of plastically deformed sheet parts of vehicles. Int J Eng Technol (UAE) 7(4):92–99. https://doi.org/10.14419/ijet.v7i4.3.19558

    Article  Google Scholar 

  35. Eron’ko SP (2003) Efficient slide-gate systems. Metallurgist 47(3–4):158–162. https://doi.org/10.1023/A:1025078231671

    Article  Google Scholar 

  36. Nikolaev VA, Rusakov AD, Chichenev NA (1996) Forecasting a multiroll mills rolls hardness. Stal’ 9:58–60

    Google Scholar 

  37. Kobelev OA, Albul SV, Kirillova NL (2020) Research and development of broaching methods on mandrel of large-sized pipe forgings. IOP Conf Ser Mater Sci Eng 709(3):044104. https://doi.org/10.1088/1757-899X/709/4/044104

    Article  Google Scholar 

  38. Osadchiy VA, Albul SV, Kuprienko NS, Kirillova NL (2020) Future developments of a roll forming mill design algorithm. IOP Conf Ser Mater Sci Eng 709(3):044079. https://doi.org/10.1088/1757-899X/709/4/044079

    Article  Google Scholar 

  39. Gorbatyuk S, Kondratenko V, Sedykh L (2019) Investigation of the deep hole drill stability when using a steady rest. Mater Today Proc 11:258–264. https://doi.org/10.1016/j.matpr.2018.12.140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, D.C., Yefremov, D.B. (2021). Mathematical Simulation for Forecasting an Uneven Distribution of the Stressed-Strain State of Metal When Expanding Large-Diameter Pipes. In: Radionov, A.A., Gasiyarov, V.R. (eds) Proceedings of the 6th International Conference on Industrial Engineering (ICIE 2020). ICIE 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-54814-8_111

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54814-8_111

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54813-1

  • Online ISBN: 978-3-030-54814-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics