Skip to main content

Asthma, Hay Fever, Pollen, and Climate Change

  • Chapter
  • First Online:
Climate Change and Global Public Health

Part of the book series: Respiratory Medicine ((RM))

Abstract

Climate change is known as one of the biggest health threats since the beginning of the twenty-first century. There has been a dramatic increase in pollen and atmospheric concentrations of greenhouse gases, including carbon dioxide (CO2). Increased amounts of CO2 have altered global temperatures and weather extremes, such as Hurricanes Katrina, Sandy, and Maria. Power outages, aerosolized pollen and mold, and wreckage are just a few of the impacts of these hurricanes. Consequently, this has caused a dramatic rise in allergic diseases, including hay fever, bronchial asthma, sinusitis, atopic dermatitis, and chronic urticaria. Downstream consequences, such as the inability to access pharmacies due to floodwater, relapse of cigarette smoking, and post-traumatic stress, are equally important. With these catastrophic events in mind, it is imperative to take preventative measures to avert future disasters. With a continued rise in global emissions, adaptation strategies and an adequate amount of planning need to be done in order to avoid any new long-lasting respiratory/allergic health issues that are caused by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Pre-industrial: The multi-century period prior to the onset of large-scale industrial activity around 1750. The reference period 1850–1900 is used to approximate pre-industrial global mean surface temperature [16].

  2. 2.

    157 mph or higher (Saffir-Simpson Wind Scale).

  3. 3.

    A fungal cell wall component with known toxic and inflammatory effects [37].

  4. 4.

    Federal Emergency Management Agency.

  5. 5.

    Compared to IRIS (Integrated Risk Information System), OSHA (Occupational Safety and Health Administration), NIOSH (National Institute for Occupational Safety and Health), and ACGIH (American Conference of Governmental Industrial Hygienists) exposure limits.

  6. 6.

    Adenocarcinomic human alveolar basal epithelial cells.

  7. 7.

    Prevalence ratio.

Bibliography

  1. Petoukhov V, Semenov VA. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res. 2010;115 https://doi.org/10.1029/2009JD013568.

  2. Ziska L, Knowlton K, Rogers C, et al. Recent warming by latitude associated with increased length of ragweed pollen season in Central North America. Proc Natl Acad Sci. 2011;108:4248–51. https://doi.org/10.1073/pnas.1014107108.

    Article  PubMed  Google Scholar 

  3. Chen Y, Forsyth E, Pan K, et al. Atmospheric temperature & pollen counts impact New York City asthma ER visits. J Allergy Clin Immunol. 2010;125:AB208. https://doi.org/10.1016/j.jaci.2009.12.813.

    Article  Google Scholar 

  4. Stach A, García-Mozo H, Prieto-Baena JC, et al. Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol. 2007;17:39–47.

    CAS  PubMed  Google Scholar 

  5. Ziska LH. Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. DNA Cell Biol. 2008;27:165–72. https://doi.org/10.1089/dna.2007.0726.

    Article  CAS  PubMed  Google Scholar 

  6. Kizilpinar I, Civelek E, Tuncer A, et al. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005–2008. Int J Biometeorol. 2011;55:623–31. https://doi.org/10.1007/s00484-010-0363-8.

    Article  PubMed  Google Scholar 

  7. Beggs PJ. Impacts of climate change on aeroallergens: past and future. Clin Htmlent Glyphamp Asciiamp Exp Allergy. 2004;34:1507–13. https://doi.org/10.1111/j.1365-2222.2004.02061.x.

    Article  CAS  Google Scholar 

  8. Metintas S, Kurt E, PARFAIT Study Group. Geo-climate effects on asthma and allergic diseases in adults in Turkey: results of PARFAIT study. Int J Environ Health Res. 2010;20:189–99. https://doi.org/10.1080/09603120903456828.

    Article  PubMed  Google Scholar 

  9. Peden DB, Bush RK. Advances in environmental and occupational respiratory disease in 2010. J Allergy Clin Immunol. 2011;127:696–700. https://doi.org/10.1016/j.jaci.2011.01.030.

    Article  CAS  PubMed  Google Scholar 

  10. Dharajiya NG, Bacsi A, Boldogh I, Sur S. Pollen NAD(P)H oxidases and their contribution to allergic inflammation. Immunol Allergy Clin N Am. 2007;27:45–63. https://doi.org/10.1016/j.iac.2006.11.007.

    Article  Google Scholar 

  11. Cecchi L, D’Amato G, Ayres JG, et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology: climate change and aerobiology. Allergy. 2010; https://doi.org/10.1111/j.1398-9995.2010.02423.x.

  12. Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest. 1994;94:1417–25. https://doi.org/10.1172/JCI117478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sheffield PE, Knowlton K, Carr JL, Kinney PL. Modeling of regional climate change effects on ground-level ozone and childhood asthma. Am J Prev Med. 2011;41:251–7. https://doi.org/10.1016/j.amepre.2011.04.017.

    Article  PubMed  PubMed Central  Google Scholar 

  14. D’Amato G, Cecchi L, D’Amato M, Liccardi G. Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol. 2010;20:95–102; quiz following 102

    PubMed  Google Scholar 

  15. Szema AM. Climate change, allergies, and asthma. J Occup Environ Med. 2011;53:1353–4. https://doi.org/10.1097/JOM.0b013e318237a00d.

    Article  PubMed  Google Scholar 

  16. Masson-Delmotte V, Zhai P, Portner H, et al. IPCC, 2018: summary for policymakers. In: global warming of 1.5°C. an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva. Switzerland: World Meterological Organization; 2018.

    Google Scholar 

  17. Institute of Medicine (U.S.). Damp indoor spaces and health. Washington, DC: National Academies Press; 2004.

    Google Scholar 

  18. Crimmins A, Balbus J, Gamble J, et al. The impacts of climate change on human health in the United States: a scientific assessment. Washington, DC: U.S. Global Change Research Program; 2016.

    Book  Google Scholar 

  19. Jacob B, Ritz B, Gehring U, et al. Indoor exposure to molds and allergic sensitization. Environ Health Perspect. 2002;110:647–53. https://doi.org/10.1289/ehp.02110647.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blatter J, Forno E, Brehm J, et al. Fungal exposure, atopy, and asthma exacerbations in puerto rican children. Ann Am Thorac Soc. 2014;11:925–32. https://doi.org/10.1513/AnnalsATS.201402-077OC.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karvonen AM, Hyvarinen A, Korppi M, et al. Moisture damage and asthma: a birth cohort study. Pediatrics. 2015;135:e598–606. https://doi.org/10.1542/peds.2014-1239.

    Article  PubMed  Google Scholar 

  22. Sharpe RA, Thornton CR, Tyrrell J, et al. Variable risk of atopic disease due to indoor fungal exposure in NHANES 2005–2006. Clin Exp Allergy. 2015;45:1566–78. https://doi.org/10.1111/cea.12549.

    Article  CAS  PubMed  Google Scholar 

  23. Bender MA, Knutson TR, Tuleya RE, et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science. 2010;327:454. https://doi.org/10.1126/science.1180568.

    Article  CAS  PubMed  Google Scholar 

  24. Grinsted A, Moore JC, Jevrejeva S. Projected Atlantic hurricane surge threat from rising temperatures. Proc Natl Acad Sci U S A. 2013;110:5369–73. https://doi.org/10.1073/pnas.1209980110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Risser MD, Wehner MF. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane Harvey. Geophys Res Lett. 2017;44:12, 457–12, 464 https://doi.org/10.1002/2017GL075888.

  26. Klotzbach P, Bowen S, Pielke R Jr, Bell M. Continental U.S. hurricane landfall frequency and associated damage: observations and future risks. Am Meteor Soc. 2018;99(7):1359–76.

    Article  Google Scholar 

  27. Melillo JM, Richmond T (T. C.), Yohe GW. Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program. 2014;841 https://doi.org/10.7930/J0Z31WJ2.

  28. Webster PJ, Holland GJ, Curry JA, Chang H-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science. 2005;309:1844. https://doi.org/10.1126/science.1116448.

    Article  CAS  PubMed  Google Scholar 

  29. Elsner JB, Kossin JP, Jagger TH. The increasing intensity of the strongest tropical cyclones. Nature. 2008;455:92–5. https://doi.org/10.1038/nature07234.

    Article  CAS  PubMed  Google Scholar 

  30. U.S. Global Change Research Program, Wuebbles DJ, Fahey DW, et al. Climate science special report: fourth national climate assessment, vol. I: U.S. Global Change Research Program; 2017.

    Google Scholar 

  31. Knabb R, Rhome J, Brown D. Tropical cyclone report hurricane Katrina 23–30 August 2005: National Hurricane Center; 2005.

    Google Scholar 

  32. Brunkard J, Namulanda G, Ratard R. Hurricane Katrina deaths, Louisiana, 2005. Disaster Med Public Health Prep. 2008;2:215–23. https://doi.org/10.1097/DMP.0b013e31818aaf55.

    Article  PubMed  Google Scholar 

  33. Facts + Statistics: Hurricanes. Insurance Information Institute.

    Google Scholar 

  34. Riggs MA, Rao CY, Brown CM, et al. Resident cleanup activities, characteristics of flood-damaged homes and airborne microbial concentrations in New Orleans, Louisiana, October 2005. Environ Res. 2008;106:401–9. https://doi.org/10.1016/j.envres.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  35. Chew GL, Wilson J, Rabito FA, et al. Mold and endotoxin levels in the aftermath of hurricane Katrina: a pilot project of homes in New Orleans undergoing renovation. Environ Health Perspect. 2006;114:1883–9. https://doi.org/10.1289/ehp.9258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baxi SN, Portnoy JM, Larenas-Linnemann D, et al. Exposure and health effects of fungi on humans. J Allergy Clin Immunol Pract. 2016;4:396–404. https://doi.org/10.1016/j.jaip.2016.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Williams DL. Overview of (1 → 3)-beta-D-glucan immunobiology. Mediat Inflamm. 1997;6:247–50. https://doi.org/10.1080/09629359791550.

    Article  CAS  Google Scholar 

  38. Inamdar AA, Bennett JW. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model: volatile organic compounds from fungal isolates induce developmental defects and apoptosis. Environ Toxicol. 2015;30:614–20. https://doi.org/10.1002/tox.21933.

    Article  CAS  PubMed  Google Scholar 

  39. Adhikari A, Jung J, Reponen T, et al. Aerosolization of fungi, (1→3)-β-d glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environ Res. 2009;109:215–24. https://doi.org/10.1016/j.envres.2008.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi H, Schmidbauer N, Bornehag C-G. Volatile organic compounds of possible microbial origin and their risks on childhood asthma and allergies within damp homes. Environ Int. 2017;98:143–51. https://doi.org/10.1016/j.envint.2016.10.028.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Biagini Myers JM, Brandt EB, et al. β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant TH2/TH17 responses. J Allergy Clin Immunol. 2017;139:54–65.e8. https://doi.org/10.1016/j.jaci.2016.02.031.

    Article  CAS  PubMed  Google Scholar 

  42. Oluwole O, Rennie DC, Senthilselvan A, et al. The association between endotoxin and beta-(1 → 3)-D-glucan in house dust with asthma severity among schoolchildren. Respir Med. 2018;138:38–46. https://doi.org/10.1016/j.rmed.2018.03.015.

    Article  PubMed  Google Scholar 

  43. Maheswaran D, Zeng Y, Chan-Yeung M, et al. Exposure to Beta-(1,3)-D-glucan in house dust at age 7–10 is associated with airway hyperresponsiveness and atopic asthma by age 11–14. PLoS One. 2014;9:e98878. https://doi.org/10.1371/journal.pone.0098878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bloom E, Grimsley LF, Pehrson C, et al. Molds and mycotoxins in dust from water-damaged homes in New Orleans after hurricane Katrina. Indoor Air. 2009;19:153–8. https://doi.org/10.1111/j.1600-0668.2008.00574.x.

    Article  CAS  PubMed  Google Scholar 

  45. Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–99. https://doi.org/10.1007/s00253-010-2632-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peltola J, Andersson MA, Haahtela T, et al. Toxic-metabolite-producing bacteria and fungus in an indoor environment. Appl Environ Microbiol. 2001;67:3269–74. https://doi.org/10.1128/AEM.67.7.3269-3274.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moreira DC, Oliveira MME, Borba CM. Human pathogenic Paecilomyces from food. Microorganisms. 2018;6 https://doi.org/10.3390/microorganisms6030064.

  48. Steiner B, Aquino VR, Paz AA, et al. Paecilomyces variotii as an emergent pathogenic agent of pneumonia. Case Rep Infect Dis. 2013;2013:273848. https://doi.org/10.1155/2013/273848.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Petrikkos G, Skiada A, Lortholary O, et al. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;54(Suppl 1):S23–34. https://doi.org/10.1093/cid/cir866.

    Article  Google Scholar 

  50. Rusiecki JA, Thomas DL, Chen L, et al. Disaster-related exposures and health effects among US coast guard responders to hurricanes Katrina and Rita: a cross-sectional study. J Occup Environ Med. 2014;56:820–33. https://doi.org/10.1097/JOM.0000000000000188.

    Article  PubMed  Google Scholar 

  51. Webb BJ, Blair JE, Kusne S, et al. Concurrent pulmonary Aspergillus fumigatus and Mucor infection in a cardiac transplant recipient: a case report. Transplant Proc. 2013;45:792–7. https://doi.org/10.1016/j.transproceed.2012.03.056.

    Article  CAS  PubMed  Google Scholar 

  52. Kim K-H, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015;74:136–43. https://doi.org/10.1016/j.envint.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  53. Bourgeois B, Owens JW. The influence of hurricanes Katrina and Rita on the inflammatory cytokine response and protein expression in A549 cells exposed to PM 2.5 collected in the Baton Rouge–Port Allen industrial corridor of Southeastern Louisiana in 2005. Toxicol Mech Methods. 2014;24:220–42. https://doi.org/10.3109/15376516.2014.881945.

    Article  CAS  PubMed  Google Scholar 

  54. Wang K, You D, Balakrishna S, et al. Sediment from hurricane katrina: potential to produce pulmonary dysfunction in mice. Int J Clin Exp Med. 2008;1:130–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Presley SM, Rainwater TR, Austin GP, et al. Assessment of pathogens and toxicants in New Orleans, LA following hurricane Katrina. Environ Sci Technol. 2006;40:468–74.

    Article  CAS  Google Scholar 

  56. Tak S, Bernard BP, Driscoll RJ, Dowell CH. Floodwater exposure and the related health symptoms among firefighters in New Orleans, Louisiana 2005. Am J Ind Med. 2007;50:377–82. https://doi.org/10.1002/ajim.20459.

    Article  PubMed  Google Scholar 

  57. Ashley NA, Valsaraj KT, Thibodeaux LJ. Elevated in-home sediment contaminant concentrations – the consequence of a particle settling-winnowing process from hurricane Katrina floodwaters. Chemosphere. 2008;70:833–40. https://doi.org/10.1016/j.chemosphere.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  58. Kennish MJ. Encyclopedia of estuaries. Dordrecht: Springer Science+Business Media; 2016.

    Book  Google Scholar 

  59. Rath B, Young E, Harris A, et al. Adverse respiratory symptoms and environmental exposures among children and adolescents following hurricane Katrina. Public Health Rep. 2011;126:853–60.

    Article  Google Scholar 

  60. Rando RJ, Kwon C-W, Lefante JJ. Exposures to thoracic particulate matter, endotoxin, and glucan during post-hurricane Katrina restoration work, New Orleans 2005–2012. J Occup Environ Hyg. 2014;11:9–18. https://doi.org/10.1080/15459624.2013.839879.

    Article  CAS  PubMed  Google Scholar 

  61. Kessler RC, Galea S, Gruber MJ, et al. Trends in mental illness and suicidality after hurricane Katrina. Mol Psychiatry. 2008;13:374–84. https://doi.org/10.1038/sj.mp.4002119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arcaya M, Lowe S, Rhodes J, et al. Association of PTSD symptoms with asthma attacks among hurricane Katrina survivors. J Trauma Stress. 2014;27:725–9.

    Article  Google Scholar 

  63. Rosenberg SL, Miller GE, Brehm JM, Celedón JC. Stress and asthma: novel insights on genetic, epigenetic, and immunologic mechanisms. J Allergy Clin Immunol. 2014;134:1009–15. https://doi.org/10.1016/j.jaci.2014.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mindlis I, Morales-Raveendran E, Goodman E, et al. Post-traumatic stress disorder dimensions and asthma morbidity in world trade center rescue and recovery workers. J Asthma Off J Assoc Care Asthma. 2017;54:723–31. https://doi.org/10.1080/02770903.2016.1263650.

    Article  CAS  Google Scholar 

  65. de la Hoz RE, Jeon Y, Miller GE, et al. Post-traumatic stress disorder, bronchodilator response, and incident asthma in world trade center rescue and recovery workers. Am J Respir Crit Care Med. 2016;194:1383–91. https://doi.org/10.1164/rccm.201605-1067OC.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baschnagel J, Coffey S, Schumacher J, et al. Relationship between PTSD symptomatology and nicotine dependence severity in crime victims. Addict Behav. 2008;33:1441–7.

    Article  Google Scholar 

  67. Rudowitz R, Rowland D, Shartzer A. Health care in New Orleans before and after hurricane Katrina. Health Aff. 2006;25:w393–406.

    Article  Google Scholar 

  68. Dippold L, Patnaik J, Vogt R, et al. Illness surveillance and rapid needs assessment among hurricane Katrina evacuees – Colorado, September 1–23, 2005. MMWR. 2006;55:244–7.

    Google Scholar 

  69. Purdy E. Hurricane Sandy. Salem Press Encyclopedia.

    Google Scholar 

  70. Blake E, Kimberlain T, Berg R, et al. Tropical cyclone report: hurricane Sandy (AL182012) 22–29 October 2012: National Hurricane Center; 2013.

    Google Scholar 

  71. Kim S, Kulkarni PA, Rajan M, et al. Hurricane Sandy (New Jersey): mortality rates in the following month and quarter. Am J Public Health. 2017;107:1304–7. https://doi.org/10.2105/AJPH.2017.303826.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Manuel J. The long road to recovery: environmental health impacts of hurricane Sandy. Environ Health Perspect. 2013;121:a152–9. https://doi.org/10.1289/ehp.121-a152.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim HK, Takematsu M, Biary R, et al. Epidemic gasoline exposures following hurricane Sandy. Prehosp Disaster Med. 2013;28:586–91. https://doi.org/10.1017/S1049023X13009023.

    Article  PubMed  Google Scholar 

  74. Saporta D, Hurst D. Increased sensitization to mold allergens measured by intradermal skin testing following hurricanes. J Environ Public Health. 2017;2017:5.

    Article  Google Scholar 

  75. Divjan A, Acosta LM, Sobek E, et al. IgE antibodies to fungi among asthmatic children living in homes damaged by hurricane Sandy in New York City. J Allergy Clin Immunol. 2016;137:AB180. https://doi.org/10.1016/j.jaci.2015.12.723.

    Article  Google Scholar 

  76. Sood G, Vaidya D, Dam L, et al. A polymicrobial fungal outbreak in a regional burn center after hurricane Sandy. Am J Infect Control. 2018;46:1047–50. https://doi.org/10.1016/j.ajic.2018.01.011.

    Article  PubMed  Google Scholar 

  77. Gargano LM, Locke S, Jordan HT, Brackbill RM. Lower respiratory symptoms associated with environmental and reconstruction exposures after hurricane Sandy. Disaster Med Public Health Prep. 2018;12:697–702. https://doi.org/10.1017/dmp.2017.140.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Irfan U. One of the clearest signs of climate change in hurricanes Maria, Irma, and Harvey was the rain: Vox Media; 2017.

    Google Scholar 

  79. Palmer J. Surviving climate change: lessons from hurricane Maria: Cable News Network; 2018.

    Google Scholar 

  80. Associated Press. Puerto Rico faces a spike in asthma cases following hurricane Maria. NBCUniversal News Group; 2018.

    Google Scholar 

  81. Pálvölgyi T, Szabó É, Makra L. Ragweed impact case study (in: evaluation and assessment of various impacts in the framework of CLAVIER project – climate change and variability: impact on Central and Eastern Europe, www.clavier-eu.org). Scientific report. Budapest: Env-in-Cent; 2009.

  82. Jelks M. Allergy plants that cause sneezing and wheezing. Tampa: World Wide Printing; 1989. p. 34–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szema, A., Li, J., Pagnotta, A., Singh, M., White, J.A. (2021). Asthma, Hay Fever, Pollen, and Climate Change. In: Pinkerton, K.E., Rom, W.N. (eds) Climate Change and Global Public Health. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54746-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54746-2_10

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54745-5

  • Online ISBN: 978-3-030-54746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics