Skip to main content

Dynamic k-NN Classification Based on Region Homogeneity

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2020)

Abstract

The effectiveness of the k-NN classifier is highly dependent on the value of the parameter k that is chosen in advance and is fixed during classification. Different values are appropriate for different datasets and parameter tuning is usually inevitable. A dataset may include simultaneously well-separated and not well-separated classes as well as noise in certain regions of the metric space. Thus, a different k value should be employed depending on the region where the unclassified instance lies. The paper proposes a new algorithm with five heuristics for dynamic k determination. The heuristics are based on a fast clustering pre-processing procedure that builds an auxiliary data structure. The latter provides information about the region where the unclassified instance lies. The heuristics exploit the information and dynamically determine how many neighbours will be examined. The data structure construction and the heuristics do not involve any input parameters. The proposed heuristics are tested on several datasets. The experimental results illustrate that in many cases they can achieve higher classification accuracy than the k-NN classifier that uses the best tuned k value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://sci2s.ugr.es/keel/datasets.php.

References

  1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Mult. Valued Log. Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  2. Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: Test point specific k estimation for kNN classifier. In: Proceedings of the 2014 22nd International Conference on Pattern Recognition, ICPR 2014, USA, pp. 1478–1483. IEEE Computer Society (2014). https://doi.org/10.1109/ICPR.2014.263

  3. Bulut, F., Amasyali, M.F.: Locally adaptive k parameter selection for nearest neighbor classifier: one nearest cluster. Pattern Anal. Appl. 20(2), 415–425 (2015). https://doi.org/10.1007/s10044-015-0504-0

    Article  MathSciNet  Google Scholar 

  4. Dasarathy, B.V.: Nearest neighbor. NN pattern classification techniques. IEEE Computer Society Press, NN norms (1991)

    Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  6. Johansson, U., Boström, H., König, R.: Extending nearest neighbor classification with spheres of confidence. In: Wilson, D., Lane, H.C. (eds.) Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society Conference, Coconut Grove, Florida, USA, 15–17 May 2008, pp. 282–287. AAAI Press (2008). http://www.aaai.org/Library/FLAIRS/2008/flairs08-070.php

  7. Mullick, S.S., Datta, S., Das, S.: Adaptive learning-based \(k\) -nearest neighbor classifiers with resilience to class imbalance. IEEE Trans. Neural Networks Learn. Syst. 29(11), 5713–5725 (2018). https://doi.org/10.1109/TNNLS.2018.2812279

    Article  MathSciNet  Google Scholar 

  8. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduction for efficient \(k\)-NN classification. Pattern Anal. Appl. 19(1), 93–109 (2014). https://doi.org/10.1007/s10044-014-0393-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Ougiaroglou, S., Nanopoulos, A., Papadopoulos, A.N., Manolopoulos, Y., Welzer-Druzovec, T.: Adaptive k-nearest-neighbor classification using a dynamic number of nearest neighbors. In: Ioannidis, Y., Novikov, B., Rachev, B. (eds.) ADBIS 2007. LNCS, vol. 4690, pp. 66–82. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75185-4_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Ougiaroglou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ougiaroglou, S., Evangelidis, G., Diamantaras, K.I. (2020). Dynamic k-NN Classification Based on Region Homogeneity. In: Darmont, J., Novikov, B., Wrembel, R. (eds) New Trends in Databases and Information Systems. ADBIS 2020. Communications in Computer and Information Science, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-54623-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54623-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54622-9

  • Online ISBN: 978-3-030-54623-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics