Skip to main content

Farm Area Segmentation in Satellite Images Using DeepLabv3+ Neural Networks

  • Conference paper
  • First Online:
Data Management Technologies and Applications (DATA 2019)

Abstract

Farm detection using low resolution satellite images is an important part of digital agriculture applications such as crop yield monitoring. However, it has not received enough attention compared to high-resolution images. Although high resolution images are more efficient for detection of land cover components, the analysis of low-resolution images are yet important due to the low-resolution repositories of the past satellite images used for timeseries analysis, free availability and economic concerns. In this paper, semantic segmentation of farm areas is addressed using low resolution satellite images. The segmentation is performed in two stages; First, local patches or Regions of Interest (ROI) that include farm areas are detected. Next, deep semantic segmentation strategies are employed to detect the farm pixels. For patch classification, two previously developed local patch classification strategies are employed; a two-step semi-supervised methodology using hand-crafted features and Support Vector Machine (SVM) modelling and transfer learning using the pretrained Convolutional Neural Networks (CNNs). For the latter, the high-level features learnt from the massive filter banks of deep Visual Geometry Group Network (VGG-16) are utilized. After classifying the image patches that contain farm areas, the DeepLabv3+ model is used for semantic segmentation of farm pixels. Four different pretrained networks, resnet18, resnet50, resnet101 and mobilenetv2, are used to transfer their learnt features for the new farm segmentation problem. The first step results show the superiority of the transfer learning compared to hand-crafted features for classification of patches. The second step results show that the model trained based on resnet50 achieved the highest semantic segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Weyenberg, S., Thysen, I., Madsen, C., Vangeyte, J.: ICT-AGRI Country Report (2010)

    Google Scholar 

  2. Schmedtmann, J., Campagnolo, M.L.: Reliable crop identification with satellite imagery in the context of Common Agriculture Policy subsidy control. Remote Sens. 7(7), 9325–9346 (2015)

    Article  Google Scholar 

  3. Leslie, C.R., Serbina, L.O., Miller, H.M.: Landsat and Agriculture—Case Studies on the Uses and Benefits of Landsat Imagery in Agricultural Monitoring and Production: U.S. Geological Survey Open-File Report, p. 27 (2017)

    Google Scholar 

  4. Vorobiova, N.S.: Crops identification by using satellite images and algorithm for calculating estimates. In: CEUR Workshop Proceedings, pp. 419–427 (2016)

    Google Scholar 

  5. Canty, M.J., Nielsen, A.A.: Visualization and unsupervised classification of changes in multispectral satellite imagery. Int. J. Remote Sens. 27, 3961–3975 (2006)

    Article  Google Scholar 

  6. Tian, J., Cui, S., Reinartz, P.: Building change detection based on satellite stereo imagery and digital surface models. IEEE Trans. Geosci. Remote Sens. 52, 406–417 (2014)

    Article  Google Scholar 

  7. Rembold, F., Atzberger, C., Savin, I., Rojas, O.: Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 5, 1704–1733 (2013). https://doi.org/10.3390/rs5041704

    Article  Google Scholar 

  8. Fisher, J.R.B., Acosta, E.A., Dennedy-Frank, P.J., Kroeger, T., Boucher, T.M.: Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens. Ecol. Conserv. 4, 137–149 (2018)

    Article  Google Scholar 

  9. Lee, L.W., Francisco, S.: Perceptual information processing system, U.S. Patent 10 618 543 (2004)

    Google Scholar 

  10. Hossain, M.D., Chen, D.: Segmentation for Object-Based Image Analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 150, 115–134 (2019)

    Article  Google Scholar 

  11. Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65, 2–16 (2010)

    Article  Google Scholar 

  12. Paola, J.D., Schowengerdt, R.A.: The effect of neural-network structure on a classification. Am. Soc. Photogramm. Remote Sens. 63, 535–544 (1997)

    Google Scholar 

  13. Hansen, M., Dubayah, R., Defries, R.: Classification trees: an alternative to traditional land cover classifiers. Int. J. Remote Sens. 17(5), 1075–1081 (1996)

    Article  Google Scholar 

  14. Hardin, P.J.: Parametric and nearest-neighbor methods for hybrid classification: a comparison of pixel assignment accuracy. Photogramtnetric Eng. Remote Sens. 60(12), 1439–1448 (1994)

    Google Scholar 

  15. Foody, G.M., Cox, D.P.: Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. Int. J. Remote Sens. 15(3), 619–631 (1994)

    Article  Google Scholar 

  16. Ryherd, S., Woodcock, C.: Combining spectral and texture data in the segmentation of remotely sensed images. Photogramm. Eng. Remote Sens. 62(2), 181–194 (1996)

    Google Scholar 

  17. Stuckens, J., Coppin, P.R., Bauer, M.E.: Integrating contextual information with per-pixel classification for improved land cover classification. Rem. Sens. Environ. 71(3), 282–296 (2000)

    Article  Google Scholar 

  18. Lang, S.: Object-based image analysis for remote sensing applications: modeling reality – dealing with complexity. In: Blaschke, T., Lang, S., Hay, G.J. (eds.) Object-Based Image Analysis. LNGC. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77058-9_1

    Chapter  Google Scholar 

  19. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011)

    Article  Google Scholar 

  20. Su, T., Zhang, S.: Local and global evaluation for remote sensing image segmentation. ISPRS J. Photogramm. Remote Sens. 130, 256–276 (2017)

    Article  Google Scholar 

  21. Juniati, E., Arrofiqoh, E.N.: Comparison of pixel-based and object-based classification using parameters and non-parameters approach for the pattern consistency of multi scale landcover. In: ISPRS Archives, pp. 765–771. International Society for Photogrammetry and Remote Sensing (2017)

    Google Scholar 

  22. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  23. Zhang, L., Yang, K.: Region-of-interest extraction based on frequency domain analysis and salient region detection for remote sensing image. IEEE Geosci. Remote Sens. Lett. 11, 916–920 (2014)

    Article  Google Scholar 

  24. Zhang, L., Li, A., Zhang, Z., Yang, K.: Global and local saliency analysis for the extraction of residential areas in high-spatial-resolution remote sensing image. IEEE Trans. Geosci. Remote Sens. 54, 3750–3763 (2016)

    Article  Google Scholar 

  25. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53, 3325–3337 (2015)

    Article  Google Scholar 

  26. Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q.: Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 9, 1–21 (2017). https://doi.org/10.3390/rs9050498

    Article  Google Scholar 

  27. Muhammad, U., Wang, W., Chattha, S.P., Ali, S.: Pre-trained VGGNet architecture for remote-sensing image scene classification. In: Proceedings - International Conference on Pattern Recognition, August 2018, pp. 1622–1627 (2018)

    Google Scholar 

  28. Albert, A., Kaur, J., Gonzalez, M.C.: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale (2017)

    Google Scholar 

  29. Wu, M., Zhang, C., Liu, J., Zhou, L., Li, X.: Towards accurate high resolution satellite image semantic segmentation. IEEE Access 7, 55609–55619 (2019). https://doi.org/10.1109/ACCESS.2019.2913442

    Article  Google Scholar 

  30. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  31. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: IEEE Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  32. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3640–3649 (2016)

    Google Scholar 

  33. Wei, Y., Feng, J., Liang, X., Cheng, M.M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1568–1576 (2017)

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55, 881–893 (2017). https://doi.org/10.1109/TGRS.2016.2616585

    Article  Google Scholar 

  36. Culurciello, A.C.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: IEEE Visual Communications and Image Processing (VCIP) (2017)

    Google Scholar 

  37. He, K., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  38. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017). arXiv:1706.05587

  39. Chen, L., Zhu, Y., Papandreou, G., Schroff, F.: Encoder-decoder with atrous separable convolution for semantic image segmentation

    Google Scholar 

  40. Sharifzadeh, S., Tata, J., Tan, B.: Farm detection based on deep convolutional neural nets and semi- supervised green texture detection using VIS-NIR satellite image important topic in digital agriculture domain. In: Data2019, pp. 100–108 (2019)

    Google Scholar 

  41. Bouvrie, J., Ezzat, T., Poggio, T.: Localized spectro-temporal cepstral analysis of speech. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, pp. 4733–4736 (2008)

    Google Scholar 

  42. Sharifzadeh, S., Skytte, J.L., Clemmensen, L.H., Ersboll, B.K.: DCT-based characterization of milk products using diffuse reflectance images. In: 2013 18th International Conference on Digital Signal Processing, DSP 2013 (2013)

    Google Scholar 

  43. Sharifzadeh, S., Serrano, J., Carrabina, J.: Spectro-temporal analysis of speech for Spanish phoneme recognition. In: 2012 19th International Conference on Systems, Signals and Image Processing, IWSSIP 2012 (2012)

    Google Scholar 

  44. Landsat.usgs.gov. Landsat 8 | Landsat Missions. https://landsat.usgs.gov. Accessed 17 May 2018

  45. Ali, A.: Comparison of Strengths and Weaknesses of NDVI and Landscape-Ecological Mapping Techniques for Developing an Integrated Land Use Mapping Approach. A case study of the Mekong delta, Vietnam (2009)

    Google Scholar 

  46. Ji, L., Zhang, L., Wylie, B.K., Rover, J.: On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR + SWIR). Int. J. Remote Sens. 32, 6901–6909 (2011)

    Article  Google Scholar 

  47. Li, B., Ti, C., Zhao, Y., Yan, X.: Estimating soil moisture with Landsat data and its application in extracting the spatial distribution of winter flooded paddies. Remote Sens. 8, 38 (2016)

    Article  Google Scholar 

  48. Gao, B.: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 266, 257–266 (1996)

    Article  Google Scholar 

  49. Tuceryan, M.: Moment based texture segmentation. In: Proceedings - International Conference on Pattern Recognition, pp. 45–48. Institute of Electrical and Electronics Engineers Inc. (1992)

    Google Scholar 

  50. MATLAB: Graycomatrix

    Google Scholar 

  51. Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  52. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intel. Syst. Technol. (TIST). 2, 1–39 (2011)

    Article  Google Scholar 

  53. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  54. Petropoulos, G.P., Kalaitzidis, C., Prasad Vadrevu, K.: Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 41, 99–107 (2012)

    Article  Google Scholar 

  55. Li, E., Xia, J., Du, P., Lin, C., Samat, A.: Integrating multilayer features of convolutional neural networks for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55(10), 5653–5665 (2017)

    Article  Google Scholar 

  56. Chaib, S., Liu, H., Gu, Y., Yao, H.: Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 55, 4775–4784 (2017)

    Article  Google Scholar 

  57. Image Net. http://www.image-net.org/. Accessed 12 Jan 2019

  58. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs (2016). arXiv:1606.00915

  59. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV (2015)

    Google Scholar 

  60. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network (2016). arXiv:1612.01105

  61. Fu, J., Liu, J., Wang, Y., Lu, H.: Stacked deconvolutional network for semantic segmentation (2017). arXiv:1708.04943

  62. Zhang, Z., Zhang, X., Peng, C., Cheng, D., Sun, J.: Enhancing feature fusion for semantic segmentation (2018). arXiv:1804.03821

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Sharifzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharifzadeh, S., Tata, J., Sharifzadeh, H., Tan, B. (2020). Farm Area Segmentation in Satellite Images Using DeepLabv3+ Neural Networks. In: Hammoudi, S., Quix, C., Bernardino, J. (eds) Data Management Technologies and Applications. DATA 2019. Communications in Computer and Information Science, vol 1255. Springer, Cham. https://doi.org/10.1007/978-3-030-54595-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54595-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54594-9

  • Online ISBN: 978-3-030-54595-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics