Skip to main content

A Compositional Semantics for Repairable BDMPs

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2020)

Abstract

Boolean-logic Driven Markov Processes (BDMPs) is a graphical language for reliability analysis of dynamic repairable systems. Simulation and trace-based analysis tools for BDMPs exist and have been used to analyze reliability, safety and security aspects of industrially relevant case studies. To enable a model-based analysis of BDMPs, such as probabilistic model checking, formal semantics is indispensable. This paper presents a rigorous semantics to repairable BDMPs using Markov automata (MA), a variant of continuous-time Markov chains (CTMCs) with action transitions. The semantics is modular: an MA is associated with each BDMP element and these are combined to obtain an automaton for the entire BDMP. By ignoring the actions that are used to “glue” the MA of BDMP elements, a CTMC is obtained that is amenable to analysis by e.g., model checking. We report on a prototypical implementation and experimentally show that our semantics corresponds to the BDMP interpretation by the tool Yet Another Monte Carlo Simulation.

S. Khan—Supported by a HEC-DAAD Scholarship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Modest Toolset: http://www.modestchecker.net/.

  2. 2.

    HTTP://qcomp.org/competition/2019/.

  3. 3.

    HTTP://sourceforge.net/projects/visualFigaro/files/Doc_and_examples/Francais/.

  4. 4.

    HTTP://github.com/moves-rwth/dft-bdmp/.

References

  1. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  2. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE TSE 32(10), 812–830 (2006)

    Google Scholar 

  3. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE TDSC 7(2), 128–143 (2009)

    Google Scholar 

  4. Bouissou, M.: Automated dependability analysis of complex systems with the KB3 workbench: the experience of EDF R&D. In: ICEE. CIEM (2005)

    Google Scholar 

  5. Bouissou, M., Bon, J.L.: A new formalism that combines advantages of fault-trees and Markov models: Boolean logic driven Markov processes. Rel. Eng. Sys. Safety 82(2), 149–163 (2003)

    Article  Google Scholar 

  6. Budde, C.E., Biagi, M., Monti, R.E., D’Argenio, P.R., Stoelinga, M.: Rare event simulation for non-Markovian repairable Fault Trees. TACAS 2020. LNCS, vol. 12078, pp. 463–482. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_26

    Chapter  Google Scholar 

  7. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9

    Chapter  Google Scholar 

  8. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017, Part II. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31

    Chapter  Google Scholar 

  9. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

    Article  Google Scholar 

  10. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

    Google Scholar 

  11. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_19

    Chapter  Google Scholar 

  12. Hartmanns, A., Hermanns, H.: A modest Markov automata tutorial. In: Krötzsch, M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial Intelligence. LNCS, vol. 11810, pp. 250–276. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31423-1_8

    Chapter  Google Scholar 

  13. Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all: a unifying semantics of Dynamic Fault Trees using GSPNs. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_14

    Chapter  MATH  Google Scholar 

  14. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees - a safety analysis model for software-controlled systems. Rel. Eng. Sys. Safety 92, 1521–1537 (2007)

    Article  Google Scholar 

  15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees. In: SCS. CRPIT, vol. 33, pp. 37–46. Australian Computer Society (2003)

    Google Scholar 

  16. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets, vol. 292. Wiley, New York (1995)

    MATH  Google Scholar 

  17. Piriou, P.Y., Faure, J.M., Lesage, J.J.: Generalized Boolean logic Driven Markov Processes: a powerful modeling framework for model-based safety analysis of dynamic repairable and reconfigurable systems. Rel. Eng. Sys. Safety 163, 57–68 (2017)

    Article  Google Scholar 

  18. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

    Article  MathSciNet  Google Scholar 

  19. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

    Article  Google Scholar 

  20. Walker, M., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees with PANDORA: the time of priority AND gates. Nonlinear Anal. Hybri. Syst. 2(2), 368–382 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, S., Katoen, JP., Bouissou, M. (2020). A Compositional Semantics for Repairable BDMPs. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2020. Lecture Notes in Computer Science(), vol 12234. Springer, Cham. https://doi.org/10.1007/978-3-030-54549-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54549-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54548-2

  • Online ISBN: 978-3-030-54549-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics