Skip to main content

Prodrug Design to Enhance Bioavailability and Systemic Delivery

  • Chapter
  • First Online:
Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 13))

  • 537 Accesses

Abstract

In the preceding two chapters in Section I, different strategies used to characterize the properties and performance of a drug, which can be either a free drug or a drug that has been loaded into a carrier, have been discussed. From Section II onward, selected strategies to enhance systemic drug delivery will be presented. As the first chapter in this section, we will introduce the concept of prodrug design. In fact, prodrugs have been very important to solve many problems with leads and drugs. The optimization of leads can overcome the “valley of death,” allowing the drug candidate to reach clinical phases. On the other hand, drugs can be optimized even though they have been launched in the therapeutics, improving their usage and patient adherence. Pharmaceutical, pharmacokinetics, and, indirectly, pharmacodynamic problems of leads and drugs can be managed by prodrug design. In this chapter, we will present some classical and recent examples related to bioavailability, prolonged action, reduction of toxicity and, mainly, selectivity of action, and will also introduce some of the drugs approved by FDA to illustrate the use of prodrug design in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abet V, Filace F, Recio J, Alvarez-Builla J, Burgos C (2016) Prodrug approach: an overview of recent cases. Eur J Med Chem 127:810–827

    Article  PubMed  CAS  Google Scholar 

  • Ahmed M, Azam F, Gbaj A, Zetrini AE, Abodlal AS, Rghigh A, Elmahdi E, Hamza A, Salama M, Bensaber SM (2016) Ester prodrugs of ketoprofen: synthesis, in vitro stability, in vivo biological evaluation and in silico comparative docking studies against COX-1 and COX-2. Curr Drug Discov Technol 13:41–57

    Article  CAS  PubMed  Google Scholar 

  • Ali Y, Alqudah A, Ahmad S, Hamid SA, Faroq U (2019) Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym 22:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allam AN, El Gamal SS, Naggar VF (2011) Bioavailability: a pharmaceutical review. Int J Novel Drug Deliv Tech 1:77–93

    Google Scholar 

  • Andersen NS, Cadahía JP, Previtali V, Bondebjerg J, Hansen CA, Hansen AE, Andresen TL, Clausen MH (2018) Methotrexate prodrugs sensitive to reactive oxygen species for the improved treatment of rheumatoid arthritis. Eur J Med Chem 156:738–746

    Article  CAS  PubMed  Google Scholar 

  • Ayalew L, Acuna J, Urfano SF, Morfin C, Sablan A, Oh M, Gamboa A, Slowinska K (2017) Conjugation of paclitaxel to hybrid peptide carrier and biological evaluation in jurkat and A549 cancer cell lines. ACS Med Chem Lett 8:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandgar BP, Sarangdhar RJ, Viswakarma S, Ahamed FA (2011) Synthesis and biological evaluation of orally active prodrugs of indomethacin. J Med Chem 54:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard H (1985) Design of prodrugs. Elsevier, Amsterdam

    Google Scholar 

  • Chao J PTAB says yes to (pro) drugs, The post-grant strategist, wolf greenfield, US, 2017. Retrieved on 17 Feb 2020 from https://blog.wolfgreenfield.com/postgrant/ptab-says-yes-to-prodrugs

  • Choi-Sledeski YM, Wermuth CG (2015) Designing prodrugs and bioprecursors. In: Wermuth CG, Aldous D, Raboisson P, Rognan D (eds) The practice of medicinal chemistry. Academic Press, New York, pp 657–696

    Google Scholar 

  • Chung MC, Silva ATA, Castro LF, Güido RVC, Nassute JC, Ferreira EI (2005) Latenciação e formas avançadas de transporte de fármacos. Rev Bras Cien Farm 41:155–179

    Article  CAS  Google Scholar 

  • Clas SD, Sanchez RI, Nofsinger R (2014) Chemistry-enabled drug delivery (prodrugs): recent progress and challenges. Drug Discov Today 19:79–87

    Article  CAS  PubMed  Google Scholar 

  • de Araujo V, Santos SS, Ferreira EI, Giarolla J (2018) New advances in general biomedical applications of PAMAM dendrimers. Molecules. 23:2849

    Article  PubMed Central  CAS  Google Scholar 

  • Delahousse J, Skarbek C, Paci A (2019) Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 84:937–958

    Article  CAS  PubMed  Google Scholar 

  • Dhaneshwar SS, Sharma M, Patel V, Desai U, Bhojal J (2011) Prodrugs strategies for antihypertensives. Curr Top Med Chem 11:2199–2317

    Google Scholar 

  • Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Ferreira EI, Seoud OE, Giarolla J (2020) Dendrimers in the context of nanomedicine. Int J Pharm 573:118814

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Vicent MJ (2013) Polymer therapeutics-prospects for twentyfirst century: the end of beginning. Adv Drug Del Rev 65:60–70

    Article  CAS  Google Scholar 

  • Ettmayer P, Amidon GL, Clement B, Testa B (2004) Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404

    Article  CAS  PubMed  Google Scholar 

  • Fukami T, Yokoi T (2012) The emerging role of human esterases. Drug Metab Pharmacokinet 27(2012):466–477

    Article  CAS  PubMed  Google Scholar 

  • Gandhi PM, Chabukswar AR, Jagdale SC (2019) Carriers for prodrug synthesis: a review. Indian J Pharm Sci 81:406–414

    CAS  Google Scholar 

  • Halen KP, Murumkar PR, Giridhar R, Yadav MR (2009) Prodrug designing of NSAIDs. Mini Rev Med Chem 9:124–139

    Article  CAS  PubMed  Google Scholar 

  • Hamada Y (2017) Recent progress in prodrug design strategies based on generally applicable modifications. Bioorg Med Chem Lett 27:1627–1632

    Article  CAS  PubMed  Google Scholar 

  • Hoste K, de Winnie K, Schacht E (2004) Polymeric prodrugs. Int J Pharm 277:129–131

    Article  CAS  Google Scholar 

  • Höybye C, Pfeiffer AFH, Ferone D, Christiansen JS, Gilfoyle D, Christoffersen ED, Mortensen E, Leff JA, Beckert M (2017) A phase 2 trial of long-acting transcon growth hormone in adult GH deficiency. End Connec 6:129–138

    Article  Google Scholar 

  • Huttunen KM, Rautio J (2011) Prodrugs—an efficient way to breach delivery and targeting barriers. Curr Top Med Chem 11:2265–2287. https://doi.org/10.2174/156802611797183230

    Article  CAS  PubMed  Google Scholar 

  • Huttunen KM, Raunio H, Rautio J (2011) Prodrugs—from serendipity to rational drug design. Pharmacol Rev 63:750–771

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Mandlekar S, Marathe P (2010) Prodrug design to improve pharmacokinetic and drug delivery properties: challenge to the discovery scientists. Curr Med Chem 17:3874–3908

    Article  CAS  PubMed  Google Scholar 

  • Jornada DH, Fernandes GFS, Chiba DE, Melo TRF, Santos JL, Chung MC (2016) The prodrug approach: a successful tool for improving drug solubility. Molecules 21:1–31

    Google Scholar 

  • Kapczynski A, Park C, Sampat B (2012) Polymorphs and prodrugs and salts (Oh My!): an empirical analysis of “secondary” pharmaceutical patents. PLoS ONE 7:e49470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaman R (2013) Prodrugs design based on inter-and intramolecular chemical processes. Chem Biol Drug Res 82:643–668

    Article  CAS  Google Scholar 

  • Lee KC, Venkateswararao E, Sharma VK, Jung SH (2014) Investigation of amino acids conjugates of (S)-1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]-4-phenyl-imidazolidin-2-one (DW2282) as water soluble anticancer prodrugs. Eur J Med Chem 80:439–46

    Article  CAS  PubMed  Google Scholar 

  • Lesniewska-Kowiel MA, Muszalska I (2017) Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem 129:53–71

    Article  CAS  PubMed  Google Scholar 

  • Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63:659–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariyam M, Ghosal K, Thoas S, Kalarikkal N, Latha MS (2018) Dendrimers: general aspects, applications and structural exploitations as prodrug/drug-delivery vehicles in current medicine. Mini-Rev Med Chem 18:439–457

    Article  CAS  PubMed  Google Scholar 

  • Markovic M, Dahan A, Keinan S, Kurnikov I, Aponick A, Zimmermann EM, Ben-Shabat S (2019b) Phospholipid-based prodrugs for colon-targeted drug delivery: experimental study and in-silico simulations. Pharmaceutics 186:1–16

    Google Scholar 

  • Markovic M, Ben-shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A (2019a) Lipid in prodrug approach for improved oral drug delivery and therapy. Med Res Rev 39(2019):579–607

    Article  PubMed  Google Scholar 

  • Meinig JM, Ferrara SJ, Banerji T, Sanford-Crane HS, Bourdette D, Scanlan TS (2017) Targeting fatty-acid amide hydrolase with prodrugs for CNS-selective therapy. ACS Chem Neurosci 11:2468–2476

    Article  CAS  Google Scholar 

  • Melisi D, Curcio A, Luongo E, Morelli E, Rimoli MG (2011) D-galactose as a vector for prodrug design. Curr Top Med Chem 11:2288–2298

    Article  CAS  PubMed  Google Scholar 

  • Mishra AP, Chandra S, Tiwari R, Srivastava A, Tiwari G (2018) Therapeutic potential of prodrugs towards targeted drug delivery. Open Med Chem J 12:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najjar A, Karaman R (2019) The prodrug approach in the era of drug design. Exp Op Drug Del 16:1–5

    Article  Google Scholar 

  • Pasut G, Veronese FM (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J Cont Rel 161:461–472

    Article  CAS  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Karkkainen J, Sloan KB (2017) Prodrugs—recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 109:146–161

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Meanwell NA, Di L, Hageman MJ (2018) The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 17:559–587

    Article  CAS  PubMed  Google Scholar 

  • Sanches BMA, Ferreira EI (2019) Is prodrug design an approach to increase water solubility? Int J Pharm 568(2019):118498

    Article  CAS  PubMed  Google Scholar 

  • Santos SS, Ferreira EI, Giarolla J (2016) Dendrimer prodrugs. Molecules 21:686–708

    Article  CAS  Google Scholar 

  • Santos SS, Gonzaga RV, Silva JV, Savino DF, Prieto D, Shikay JM, Silva RS, Paulo LHA, Ferreira EI, Giarolla J (2017) Peptide dendrimers: drug/gene delivery and other approaches. Can J Chem 95:907–916

    Article  CAS  Google Scholar 

  • Sehajpal S, Prasad DN, Singh RK (2018) Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): a long march towards synthesis of safer NSAIDs. Mini Rev Med Chem 18:1199–1219

    Article  CAS  PubMed  Google Scholar 

  • Seyhan AA (2019) Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Trans Med Comm 4(2019):18

    Article  Google Scholar 

  • Silva ATA, Chung MC, Castro LF, Güido RVC, Ferreira EI (2005) Advances in prodrug design. Mini-Rev Med Chem 5:893–914

    Article  PubMed  Google Scholar 

  • Testa B (2004) Prodrug research: futile or fertile? Biochem Pharmacol 68:2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S (2014) β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 74:302–313

    Article  CAS  PubMed  Google Scholar 

  • Vig BS, Huttunen KM, Laine K, Rautio J (2013) Amino acids as promoieties in prodrug design and development. Adv Drug Del Rev 65(2013):1370–1385

    Article  CAS  Google Scholar 

  • Wang CY, Liu S, Xie SN, Tan ZR (2017) Regulation profile of intestinal peptide transporter I (PepTI). Drug Des Dev Ther 11:3511–3517

    Article  CAS  Google Scholar 

  • Web of Science, Prodrug design 2011–2020, 2020. Retrieved on 15 Jan 15 2020 from https://apps.webofknowledge.com/

  • Wermuth CG (1984) Designing prodrugs and bioprecursors. In: Jolle G, Wooldrige KRM, (eds), Drug design: fact or fantasy? Academic Press, London, pp 47–72

    Google Scholar 

  • Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, de Clerq E, Poongavanam V, Liu X, Zhan P (2019) Overview of recent strategic advances in medicinal chemistry. J Med Chem 62:9375–9414

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou J, Lee KD, Amidon GL (2008) Molecular basis of prodrug activation by human valacyclovirase, an α-amino acid ester hydrolase. J Biol Chem 283:9318–9327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zawilska JB, Wojcieszak J, Olejniczak AB (2013) Prodrugs: a challenge for drug development. Pharmacol Rep 65:1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Igne Ferreira .

Editor information

Editors and Affiliations

Glossary

ADME

An acronym referring to absorption, distribution, metabolism and excretion of a compound upon administration to a biological body.

Bioactive compound

A compound that presents biological activity but is not a drug yet.

Biotransformation

The conversion of a chemical entity from one form to another form by means of a biological system.

Gene-directed enzyme prodrug therapy

A two-step process in which a gene encoding an enzyme is first delivered to a target cell, followed by the administration of a nontoxic prodrug that can be converted to a cytotoxin under the action of the enzyme.

Hit

A molecule which has a known structural identity and at the same time shows reproducible activity above a defined threshold in a biological assay.

Lead

A compound (or compound series) which on one hand display desirable biological activity in a relevant cell-based assay and on the other hand demonstrates proper activity, selectivity, and tractable structure-activity relationship. It is a candidate for further structure-activity optimization.

Medicinal chemistry

A discipline in chemistry which concerns with the invention, discovery, identification, design, and preparation of bioactive compounds. In addition, the metabolism and the mode of action of those compounds at the molecular level, along with the structure-activity relationships, will be studied in medicinal chemistry.

Molecular modification

Processes that give rise to changes in some characteristics of a compound/drug towards optimization.

Receptors

Molecules or polymeric structures present on the cell surface or in the cell. They can recognize and bind other agents which serve as molecular messengers (e.g. neurotransmitters, hormones, and drug molecules) in a body.

Valley of death

The occurrence of problems (e.g. o lack of solubility and high toxicity) that avoid the innovative molecule to pass through the development phase and prevent it from finally reaching the clinical phase as a drug candidate.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanches, B.M.A., Ferreira, E.I. (2020). Prodrug Design to Enhance Bioavailability and Systemic Delivery. In: Lai, WF. (eds) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-54490-4_5

Download citation

Publish with us

Policies and ethics