Skip to main content

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 13))

  • 454 Accesses

Abstract

Physical methods of drug delivery involve application of physical forces to deliver drugs using different approaches. These approaches combine forces (such as magnetic, thermal, ballistic, and electrical forces) with novel formulation techniques, for example, those in targeted drug delivery. The important approaches include iontophoresis, low-frequency ultrasound, electrophoresis, magnetic drug delivery, and the use of microneedles. Physical methods have been used for the treatment of various tumors, targeted delivery of drugs and genes, magnetic resonance imaging, cell purification, and hyperthermia. In this chapter, we will provide an overview of the strategies employed in physical methods of drug delivery. The working principles underlying ultrasound-, photo-, magnetic-, and electrical-based delivery methods, as well as the possible use of microneedles to control drug release, will be presented. Clinical applications relevant to these methods will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed SE, Martins AM, Husseini GA (2015) The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 23(1):16–42

    Article  CAS  PubMed  Google Scholar 

  • Amodwala S, Kumar P, Thakkar HP (2017) Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci 104:114–123

    Article  CAS  PubMed  Google Scholar 

  • Axcan Scandipharm Inc. (2006) PHOTOFRIN® (porfimer sodium) for injection. Retrieved on 11 Jan 2020 from https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=f5fdda24-da7d-4e61-936e-9d1a55056b82&type=display

  • Bhatnagar S, Kumari P, Pattarabhiran SP, Venuganti VVK (2018) Zein microneedles for localized delivery of chemotherapeutic agents to treat breast cancer: drug loading, release behavior, and skin permeation studies. AAPS PharmSciTech 19(4):1818–1826

    Article  CAS  PubMed  Google Scholar 

  • Biehl P, Von der Lühe M, Dutz S, Schacher FH (2018) Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic coatings. Polymers 10(1):91

    Article  PubMed Central  CAS  Google Scholar 

  • Bora P, Kumar L, Bansal A (2008) Microneedle technology for advanced drug delivery: evolving vistas. Curr Res Inf Pharm Sci 9(1):7–10

    Google Scholar 

  • Burton SA, Ng C-Y, Simmers R, Moeckly C, Brandwein D, Gilbert T, Johnson N, Brown K, Alston T, Prochnow G, Siebenaler K, Hansen K (2011) Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res 28(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Hjort M, Chen H, Birey F, Leal-Ortiz SA, Han CM, Santiago JG, Paşca SP, Wu JC, Melosh NA (2017) Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc Natl Acad Sci USA 114(10):E1866–E1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang D, Chassy B, Saunders J, Sowers A (2012) Guide to electroporation and electrofusion, 1st edn. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Chen S, Bian Q, Wang P, Zheng X, Lv L, Dang Z, Wang G (2017) Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem 8(39):6150–6157

    Article  CAS  Google Scholar 

  • Chen Y, Liang Y, Jiang P, Li F, Yu B, Yan F (2019) Lipid-PLGA hybrid microbubbles as a versatile platform for non-invasive image-guided targeted drug delivery. ACS Appl Mater Interfaces 11(45):41842–41852

    Article  CAS  PubMed  Google Scholar 

  • Croissant JG, Qi C, Mongin O, Hugues V, Blanchard-Desce M, Raehm L, Cattoen X, Wong MCM, Maynadier M, Gary-Bobo M, Garcia M, Zink J, Durand J-O (2015) Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. J Mater Chem B 3(31):6456–6461

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26(36):5896–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Santana DCAS, Dias K, Souza JG, Ogunjimi AT, Souza MC, Silva RS, Lopez RFV (2017) NO exchange for a water molecule favorably changes iontophoretic release of ruthenium complexes to the skin. Molecules 22(1):104

    Article  PubMed Central  CAS  Google Scholar 

  • del Río-Sancho S, Cros C, Coutaz B, Cuendet M, Kalia YN (2017) Cutaneous iontophoresis of μ-conotoxin CnIIIC-A potent NaV1.4 antagonist with analgesic, anaesthetic and myorelaxant properties. Int J Pharm 518(1):59–65

    Google Scholar 

  • Deng L, Xu Y, Sun C, Yun B, Sun Q, Zhao C, Li Z (2018) Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci Bull 63(14):917–924

    Article  CAS  Google Scholar 

  • Domenici F, Capocefalo A, Brasili F, Bedini A, Giliberti C, Palomba R, Silvestri I, Scarpa S, Morrone S, Paradossi G, Frogley MD, Cinque G (2019) Ultrasound delivery of surface enhanced infrared absorption active gold-nanoprobes into fibroblast cells: a biological study via synchrotron-based InfraRed microanalysis at single cell level. Sci Rep 9(1):11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Lu X, Kingston K, Brewer E, Juliar BA, Kripfgans OD, Fowlkes JB, Franceschi RT, Putnam AJ, Liu Z, Fabiilli ML (2019) Controlled delivery of basic fibroblast growth factor (bFGF) using acoustic droplet vaporization stimulates endothelial network formation. Acta Biomater 97:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B (2006) In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 53(7):1409–1415

    Article  PubMed  Google Scholar 

  • El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13(8):953–971

    Article  CAS  PubMed  Google Scholar 

  • Eskiizmir G, Basbinar Y, Yapıcı K (2018) Graphene-based nanomaterials in cancer treatment and diagnosis. In: Grumezescu AM (ed) Fullerens, graphenes and nanotubes: a pharmaceutical approach. William Andrew, US, pp 331–374

    Google Scholar 

  • Farah HF (2016) Magnetic microspheres: a novel drug delivery system. J Anal Pharm Res 3(5):00067

    Google Scholar 

  • Feng Z, Zheng Y, Zhao L, Zhang Z, Sun Y, Qiao K, Xie Y, Wang Y, He W (2019) An ultrasound-controllable release system based on waterborne polyurethane/chitosan membrane for implantable enhanced anticancer therapy. Mater Sci Eng 104:109944

    Article  CAS  Google Scholar 

  • Francisco V, Lino M, Ferreira L (2019) A near infrared light-triggerable modular formulation for the delivery of small biomolecules. J Nanobiotechnol 17(1):97

    Article  CAS  Google Scholar 

  • Galinkin JL, Rose JB, Harris K, Watcha MF (2002) Lidocaine iontophoresis versus eutectic mixture of local anesthetics (EMLA) for IV placement in children. Anesth Analg 94(6):1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Li L, He L, Hinkle K, Wu Y, Ma J, Chang L, Zhao X, Perez DG, Eckardt S, McLaughlin J, Liu B, Farson DF, Lee LJ (2014) design of a microchannel-nanochannel-microchannel array based nanoelectroporation system for precise gene transfection. Small 10(5):1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Gelfuso GM, Gratieri T, Souza JG, Thomazine JA, Lopez RFV (2011) The influence of positive or negative charges in the passive and iontophoretic skin penetration of porphyrins used in photodynamic therapy. Eur J Pharm Biopharm 77(2):249–256

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Rols MP, Teissié J (2004) In vitro and in vivo electric field-mediated permeabilization, gene transfer, and expression. Methods 33(2):126–135

    Article  CAS  PubMed  Google Scholar 

  • Gratieri T, Kalia YN (2014) Targeted local simultaneous iontophoresis of chemotherapeutics for topical therapy of head and neck cancers. Int J Pharm 460(1):24–27

    Article  CAS  PubMed  Google Scholar 

  • Gul S, Khan SB, Rehman IU, Khan MA, Khan MI (2019) A comprehensive review of magnetic nanomaterials modern day theranostics. Front Mater 6(179)

    Google Scholar 

  • Hædersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR (2010) Fractional CO2 laser-assisted drug delivery. Lasers Surg Med 42(2):113–122

    Article  PubMed  Google Scholar 

  • Hallam KA, Donnelly EM, Karpiouk AB, Hartman RK, Emelianov SY (2018) Laser-activated perfluorocarbon nanodroplets: a new tool for blood brain barrier opening. Biomed Opt Express 9(9):4527–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzig LM, Elamri I, Schwalbe H, Wachtveitl J (2017) Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys Chem Chem Phys 19(22):14835–14844

    Article  CAS  PubMed  Google Scholar 

  • Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D (2016) MMP2-targeting and redox-responsive PEGylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl Mater Interfaces 8(2):1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Shen L, Guo D, Yasen W, Wu Y, Su Y, Chen D, Qiu F, Yan D, Zhu X (2019) A NIR-triggered gatekeeper of supramolecular conjugated unimicelles with two-photon absorption for controlled drug release. Chem Commun 55(47):6735–6738

    Article  CAS  Google Scholar 

  • Ita K (2015) Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics 7(3):90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson J, Leung D, Burt H (2019) The use of ultrasound to increase the uptake and cytotoxicity of dual taxane and P-glycoprotein inhibitor loaded, solid core nanoparticles in drug resistant cells. Ultrasonics 101:106033

    Article  PubMed  CAS  Google Scholar 

  • Ji W, Li N, Chen D, Qi X, Sha W, Jiao Y, Xu Q, Lu J (2013) Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. J Mater Chem B 1(43):5942–5949

    Article  CAS  PubMed  Google Scholar 

  • Kigasawa K, Kajimoto K, Hama S, Saito A, Kanamura K, Kogure K (2010) Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. Int J Pharm 383(1):157–160

    Article  CAS  PubMed  Google Scholar 

  • Koppisetti VS, Sahiti B (2011) Magnetically modulated drug delivery systems. Int J Drug Dev Res 3(1):260–266

    CAS  Google Scholar 

  • Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF (2016) Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep 104:1–32

    Article  Google Scholar 

  • Lee W-R, Shen S-C, Lai H-H, Hu C-H, Fang J-Y (2001) Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J Control Release 75(1):155–166

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zeng M, Shan H, Tong C (2017) Microneedle patches as drug and vaccine delivery platform. Curr Med Chem 24(22):2413–2422

    Article  CAS  PubMed  Google Scholar 

  • Lifshiz Zimon R, Lerman G, Elharrar E, Meningher T, Barzilai A, Masalha M, Chintakunta R, Hollander E, Goldbart R, Traitel T, Harats M, Sidi Y, Avni D, Kost J (2018) Ultrasound targeting of Q-starch/miR-197 complexes for topical treatment of psoriasis. J Control Release 284:103–111

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Ma X, Zhou C, Yang H, Yang Y, Xie X, Yang C, Han C (2019) Development and characteristics of novel sonosensitive liposomes for vincristine bitartrate. Drug Deliv 26(1):724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-L, Chen D, Shang P, Yin D-C (2019) A review of magnet systems for targeted drug delivery. J Control Release 302:90–104

    Article  CAS  PubMed  Google Scholar 

  • Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke A-J, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Can Res 56(20):4686–4693

    Google Scholar 

  • Magforce (2019) Patient experience nanotherm therapy. Retrieved on 15 Feb 2020 from https://www.magforce.com/en/home/for-patients/experiences/experience-mateusz-dobrowolski/

  • Marshall WG Jr, Boone BA, Burgos JD, Gografe SI, Baldwin MK, Danielson ML, Larson MJ, Caretto DR, Cruz Y, Ferraro B, Heller LC, Ugen KE, Jaroszeski MJ, Heller R (2010) Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther 17(3):419–423

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2013) Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 65(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4(4):385–392

    Article  CAS  Google Scholar 

  • Morgan TM, Reed BL, Finnin BC (1998) Enhanced skin permeation of sex hormones with novel topical spray vehicles. J Pharm Sci 87(10):1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Muslimov AR, Timin AS, Bichaykina VR, Peltek OO, Karpov TE, Dubavik A, Nomine A, Ghanbaja J, Sukhorukov GB, Zyuzin MV (2019) Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers. Biomat Sci. https://doi.org/10.1039/C9BM00926D

    Article  Google Scholar 

  • Naguib YW, Kumar A, Cui Z (2014) The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil. Acta Pharmaceutica Sinica B 4(1):94–99

    Article  PubMed  PubMed Central  Google Scholar 

  • National Cancer Institute (2011) Photodynamic therapy for cancer. Retrieved on 25 Jan 2020 from https://www.cancer.gov/about-cancer/treatment/types/surgery/photodynamic-fact-sheet

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    Article  CAS  PubMed  Google Scholar 

  • Olejniczak J, Chan M, Almutairi A (2015) Light-triggered intramolecular cyclization in poly(lactic-co-glycolic acid)-based polymers for controlled degradation. Macromolecules 48(10):3166–3172

    Article  CAS  Google Scholar 

  • Pang J, Gao Z, Tan H, Mao X, Xu J, Kong J, Hu X (2019) Fabrication, investigation, and application of light-responsive self-assembled nanoparticles. Front Chem 7:620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Lee H, Lim G-S, Kim N, Kim D, Kim Y-C (2019) Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech 20(3):96

    Article  CAS  PubMed  Google Scholar 

  • Patil SS, Kumbhar DD, Manwar JV, Jadhao RG, Bakal RL, Wakode S (2019) Ultrasound-assisted facile synthesis of nanostructured hybrid vesicle for the nasal delivery of indomethacin: response surface optimization, microstructure, and stability. AAPS PharmSciTech 20(3):97

    Article  CAS  PubMed  Google Scholar 

  • Perera AS, Zhang S, Homer-Vanniasinkam S, Coppens M-O, Edirisinghe M (2018) Polymer–magnetic composite fibers for remote-controlled drug release. ACS Appl Mater Interfaces 10(18):15524–15531

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17):1870–1901

    Article  CAS  Google Scholar 

  • Pitt WG, Husseini GA, Staples BJ (2004) Ultrasonic drug delivery—a general review. Expert Opin Drug Deliv 1(1):37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar A, Banerjee R (2019) Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach. ACS Omega 4(13):15567–15580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H (2018) PSMA theranostics: current status and future directions. Mol Imag 17:1536012118776068

    Article  CAS  Google Scholar 

  • Rezaeian M, Sedaghatkish A, Soltani M (2019) Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Deliv 26(1):898–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Devora JI, Ambure S, Shi ZD, Yuan Y, Sun W, Xui T (2012) Physically facilitating drug-delivery systems. Ther Deliv 3(1):125–139

    Article  CAS  PubMed  Google Scholar 

  • Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P (2006) Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 13(2):320–327

    Article  CAS  PubMed  Google Scholar 

  • Roos AK, King A, Pisa P (2008) DNA vaccination for prostate cancer. Methods Mol Biol 423:463–472

    Article  CAS  PubMed  Google Scholar 

  • Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H, Tobin V, Nguyen DN, Lee MR, Putnam AL, Ferris AL, Chen JW, Schickel J-N, Pellerin L, Carmody D, Alkorta-Aranburu G, Del Gaudio D, Matsumoto H, Morell M, Mao Y, Cho M, Quadros RM, Gurumurthy CB, Smith B, Haugwitz M, Hughes SH, Weissman JS, Schumann K, Esensten JH, May AP, Ashworth A, Kupfer GM, Greeley SAW, Bacchetta R, Meffre E, Roncarolo MG, Romberg N, Herold KC, Ribas A, Leonetti MD, Marson A (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559(7714):405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roustit M, Blaise S, Cracowski J-L (2014) Trials and tribulations of skin iontophoresis in therapeutics. Br J Clin Pharmacol 77(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B, Onik G, Mikus P (2007) Irreversible electroporation: a new ablation modality—clinical implications. Technol Cancer Res Treat 6(1):37–48

    Article  PubMed  Google Scholar 

  • Sadeghi-Goughari M, Jeon S, Kwon H (2019) Enhancing thermal effect of focused ultrasound therapy using gold nanoparticles. IEEE Trans Nanobiosci 18(4):661–668

    Article  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoellhammer CM, Traverso G (2016) Low-frequency ultrasound for drug delivery in the gastrointestinal tract. Expert Opin Drug Deliv 13(8):1045–1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J (2018) A review on electroporation-based intracellular delivery. Molecules 23(11):3044

    Article  PubMed Central  CAS  Google Scholar 

  • Shpak O, Kokhuis TJ, Luan Y, Lohse D, de Jong N, Fowlkes B, Fabiilli M, Versluis M (2013) Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets. J Acoust Soc Am 134(2):1610–1621

    Article  CAS  PubMed  Google Scholar 

  • Song C, Zhou C, Zhang J, Feng X, Cui X, Zhang F, Ma J, Toft ES, Ge J, Zhang H (2019) Ultrasound controlled paclitaxel releasing system-a novel method for improving the availability of coronary artery drug coated balloon. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28564

    Article  PubMed  Google Scholar 

  • Sun J, Anderski J, Picker M-T, Langer K, Kuckling D (2019a) Preparation of light-responsive aliphatic polycarbonate via versatile polycondensation for controlled degradation. Macromol Chem Phys 220(5):1800539

    Google Scholar 

  • Sun J, Rust T, Kuckling D (2019b) Light-responsive serinol-based polyurethane nanocarrier for controlled drug release. Macromol Rapid Commun 40(22):1900348

    Google Scholar 

  • Tabernero J, Shapiro GI, LoRusso PM, Cervantes A, Schwartz GK, Weiss GJ, Paz-Ares L, Cho DC, Infante JR, Alsina M, Gounder MM, Falzone R, Harrop J, White ACS, Toudjarska I, Bumcrot D, Meyers RE, Hinkle G, Svrzikapa N, Hutabarat RM, Clausen VA, Cehelsky J, Nochur SV, Gamba-Vitalo C, Vaishnaw AK, Sah DWY, Gollob JA, Burris HA (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417

    Article  CAS  PubMed  Google Scholar 

  • Taveira SF, Nomizo A, Lopez RFV (2009) Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release 134(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B (2016) Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci 4(3):1600279

    Google Scholar 

  • Thomas E, Menon JU, Owen J, Skaripa-Koukelli I, Wallington S, Gray M, Mannaris C, Kersemans V, Allen D, Kinchesh P, Smart S, Carlisle R, Vallis KA (2019) Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 9(19):5595–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran DM, Zhang F, Morrison KP, Loeb KR, Harrang J, Kajimoto M, Chavez F, Wu L, Miao CH (2019) Transcutaneous ultrasound-mediated nonviral gene delivery to the liver in a porcine model. Mol Ther Methods Clin Dev 14:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucci ST, Kheirolomoom A, Ingham ES, Mahakian LM, Tam SM, Foiret J, Hubbard NE, Borowsky AD, Baikoghli M, Cheng RH, Ferrara KW (2019) Tumor-specific delivery of gemcitabine with activatable liposomes. J Controlled Release 309:277–288

    Article  CAS  Google Scholar 

  • U.S. National Library of Medicine (2014) Dose finding study of a DNA vaccine delivered with intradermal electroporation in patients with prostate cancer. Retrieved on 15 Feb 2020 from https://www.clinicaltrials.gov/ct2/show/NCT00859729?term=NCT00859729&draw=2&rank=1

  • VanDersarl JJ, Xu AM, Melosh NA (2012) Nanostraws for direct fluidic intracellular access. Nano Lett 12(8):3881–3886

    Article  CAS  PubMed  Google Scholar 

  • Villar-Alvarez E, Cambón A, Pardo A, Arellano L, Marcos AV, Pelaz B, Del Pino P, Bouzas Mosquera A, Mosquera VX, Almodlej A, Prieto G, Barbosa S, Taboada P (2019) Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnol 17(1):106

    Google Scholar 

  • Viscusi ER, Reynolds L, Chung F, Atkinson LE, Khanna S (2004) Patient-controlled transdermal fentanyl hydrochloride vs intravenous morphine pump for postoperative pain: a randomized controlled trial. J Am Med Assoc 291(11):1333–1341

    Article  CAS  Google Scholar 

  • Wang Z, Ju Y, Ali Z, Yin H, Sheng F, Lin J, Wang B, Hou Y (2019a) Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nature Commun 10(1):4418

    Google Scholar 

  • Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, Zhang Q, Ni YH, Wang J, Hu Q (2019b) A near infrared light-triggered human serum albumin drug delivery system with coordination bonding of indocyanine green and cisplatin for targeting photochemistry therapy against oral squamous cell cancer. Biomater Sci 7:5270–5282

    Google Scholar 

  • Weaver J, Chizmadzhev Y (2005) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  Google Scholar 

  • Wei G, Yang G, Wei B, Wang Y, Zhou S (2019) Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer. Acta Biomater 100:365–377

    Article  CAS  PubMed  Google Scholar 

  • Wen R, Zhang A-H, Liu D, Feng J, Yang J, Xia D, Wang J, Li C, Zhang T, Hu N, Hang T, He G, Xie X (2019) Intracellular delivery and sensing system based on electroplated conductive nanostraw arrays. ACS Appl Mater Interfaces 11(47):43936–43948

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Huang S (2017) Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 7(5):738–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA (2013) Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7(5):4351–4358

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Pascual C, Lieu C, Oh S, Wang J, Zou B, Xie J, Li Z, Xie J, Yeomans DC, Wu MX, Xie XS (2017) Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 11(1):395–406

    Article  CAS  PubMed  Google Scholar 

  • Xiong F, Huang S, Gu N (2018) Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 44(5):697–706

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Xie S, Adhikari VP, Dong Y, Du Y, Li D (2018) The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro. Int J Pharm 542(1):232–241

    Google Scholar 

  • Yin T, Wang P, Li J, Wang Y, Zheng B, Zheng R, Cheng D, Shuai X (2014) Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 35(22):5932–5943

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Demith A, Stoffel R, Zhang Z, Park YC (2019) Light-activated doxorubicin-encapsulated perfluorocarbon nanodroplets for on-demand drug delivery in an in vitro angiogenesis model: Comparison between perfluoropentane and perfluorohexane. Colloids Surf, B 184:110484

    Article  CAS  Google Scholar 

  • Zempsky WT, Sullivan J, Paulson DM, Hoath SB (2004) Evaluation of a low-dose lidocaine iontophoresis system for topical anesthesia in adults and children: a randomized, controlled trial. Clin Ther 26(7):1110–1119

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Liu X, Hou R, Zhang J, Li J, Huo P, Xu Y, Zhang Z (2019a) Ultrasound-triggered gas-generating doxorubicin poly(lactic-co-glycolic acid)-nanoparticles for cancer therapy. J Nanosci Nanotechnol 19(9):5463–5468

    Google Scholar 

  • Zhang N, Wang Y, Wu R, Xu C, Nie JJ, Zhao N, Yu B, Liu Z, Xu FJ (2019b) Oxidation-responsive nanoassemblies for light-enhanced gene therapy. Small 15(45):1904017

    Google Scholar 

  • Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R (2019) Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small 15(45):1903060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Vadlapatla .

Editor information

Editors and Affiliations

Glossary

Active targeting

Selective transport of a carrier to specific cells/tissues by modifying the carrier with a chemical group that can be recognized specifically by those target cells/tissues.

Dielectrophoresis

Motion of a neutral particle caused by polarization effects in a non-uniform electric field.

Erythema

Abnormal redness of the skin or the mucous membrane caused by capillary congestion.

Iontophoresis

A method in which the charged drug is delivered through the biological membranes under the influence of very mild electric current.

Magnetic liposomes

Vesicular, colloidal particles prepared by entrapment of ferro fluid within the core of liposomes.

Magnetic microspheres

Supramolecular magnetic hollow spherical particles in the micrometer size range. They are comprised of different materials such as proteins or synthetic polymers.

Microneedles

Miniature needles fabricated from lithographic techniques for transdermal drug delivery.

P-glycoprotein

A 170-kDa plasma membrane protein which is thought to be responsible for the occurence of multidrug resistance in mammalian cells.

Proto-oncogenes

Genes that show the potential to be changed into active oncogenes.

Reverse electroporation

A technique that involves temporary permeabilization of the cell membrane under the influence of a short electric impulse. This technique can be utilized to deliver a wide range of therapeutic agents including, dyes, tracers, antibodies, and oligoneucleotides.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vadlapatla, R., Wang, Z., Kumar, P., Pavuluri, N. (2020). Use of Physical Approaches for Systemic Drug Delivery. In: Lai, WF. (eds) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-54490-4_11

Download citation

Publish with us

Policies and ethics