Skip to main content

Non-invasive Lactate Threshold Estimation Using Machine Learning

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2019)

Abstract

The Lactate threshold (LT) has gained special attention in the sport world and is considered one of the potential indicators to evaluate individual performance in different sports. Traditionally, measuring LT requires frequent collection of blood samples from individuals under specific spatiotemporal conditions. This procedure causes discomfort to individuals besides test related cost. In this paper, we propose a non-invasive model to estimate LT using a machine learning (ML) algorithm as a step towards eliminating the need of blood sample collection and facilitating non-invasive performance test. We train and test this model on a 100-subject dataset, which we constructed in collaboration with Peak Center for Human Performance. We also propose a method to fill the missing values in this dataset, which contains the collected data of real life incremental running tests performed at this Centre. We also shed the light on the correlation between demographic data and the LT occurrence and hence help determine the factors affecting LT estimation as a vital sign in the sport world. Applying a multi-layer perceptron (MLP) algorithm on the constructed dataset provided the best correlation coefficient of 0.7983 compared with the LT ground truth scores. Using different combinations of demographic data in conjunction with heart rate (HR) and speed in the training and testing provided various correlation coefficients, which are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Myers, J., Ashley, E.: Dangerous curves: a perspective on exercise, lactate, and the anaerobic threshold. Chest 111(3), 787–795 (1997)

    Article  Google Scholar 

  2. Badawi, H.F., Dong, H., El Saddik, A.: Mobile cloud-based physical activity advisory system using biofeedback sensors. Future Gener. Comput. Syst. 66, 59–70 (2017)

    Article  Google Scholar 

  3. Lamaarti, F., Arafsha, F., Hafidh, B., El Saddik, A.: Automated athlete haptic training system for soccer sprinting. In: Proceedings - 2nd International Conference on Multimedia Information Processing and Retrieval, MIPR 2019, pp. 303–309 (2019)

    Google Scholar 

  4. Faude, O., Kindermann, W., Meyer, T.: Lactate threshold concepts: how valid are they? Sports Med. 39(6), 469–490 (2009)

    Article  Google Scholar 

  5. Hall, M.M., Rajasekaran, S., Thomsen, T.W., Peterson, A.R.: Lactate: friend or foe. PM R 8(3), S8–S15 (2016)

    Article  Google Scholar 

  6. Nascimento, E.M.F., Kiss, M.A.P.D.M., Santos, T.M., Lambert, M., Pires, F.O.: Determination of lactate thresholds in maximal running test by heart rate variability data set. Asian J. Sports Med. 8(3), e58480 (2017)

    Google Scholar 

  7. Marques-Neto, S.R., Santos, E.L., Maior, A.S., Neto, G.A.M.: Analysis of heart rate deflection points to predict the anaerobic threshold by a computerized method. J. Strength Cond. Res. 26(7), 1967–1974 (2012)

    Article  Google Scholar 

  8. Simões, R.P., Mendes, R.G., Castello-Simões, V., Catai, A.M., Arena, R., Borghi-Silva, A.: Use of heart rate variability to estimate lactate threshold in coronary artery disease patients during resistance exercise. J. Sports Sci. Med. 15(4), 649–657 (2016)

    Google Scholar 

  9. Garcia-Tabar, I., Llodio, I., Sánchez-Medina, L., Ruesta, M., Ibañez, J., Gorostiaga, E.M.: Heart rate-based prediction of fixed blood lactate thresholds in professional team-sport players. J. Strength Cond. Res. 29(10), 2794–2801 (2015)

    Article  Google Scholar 

  10. Nikooie, R., Gharakhanlo, R., Rajabi, H., Bahraminegad, M., Ghafari, A.: Noninvasive determination of anaerobic threshold by monitoring the %SpO2 changes and respiratory gas exchange. J. Strength Cond. Res. 23(7), 2107–2113 (2009)

    Article  Google Scholar 

  11. Wasserman, K., Whipp, B.J., Koyal, S.N., Beaver, W.L.: Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 35(2), 236–243 (1973)

    Article  Google Scholar 

  12. Llodio, I., Garcia-Tabar, I., Sánchez-Medina, L., Ibáñez, J., Gorostiaga, E.M.: Estimation of the maximal lactate steady state in junior soccer players. Int. J. Sports Med. 36(14), 1142–1148 (2015)

    Article  Google Scholar 

  13. Mason, A., et al.: Noninvasive in-situ measurement of blood lactate using microwave sensors. IEEE Trans. Biomed. Eng. 65(3), 698–705 (2018)

    Article  Google Scholar 

  14. Arteaga-Falconi, J.S., et al.: Dtwins: a digital twins ecosystem for health and well-being. IEEE COMSOC MMTC Commun. Front. 14(2), 39–43 (2019)

    Google Scholar 

  15. Henriet, J.: Artificial intelligence-virtual trainer: an educative system based on artificial intelligence and designed to produce varied and consistent training lessons. Proc. Inst. Mech. Eng. Part P: J. Sports Eng. Technol. 231(2), 110–124 (2017)

    MathSciNet  Google Scholar 

  16. Fister Jr., I., Ljubič, K., Suganthan, P.N., Perc, M., Fister, I.: Computational intelligence in sports: challenges and opportunities within a new research domain. Appl. Math. Comput. 262, 178–186 (2015)

    MathSciNet  Google Scholar 

  17. Erdogan, A., Cetin, C., Goksu, H., Guner, R., Baydar, M.L.: Non-invasive detection of the anaerobic threshold by a neural network model of the heart rate-work rate relationship. Proc. Inst. Mech. Eng. Part P: J. Sports Eng. Technol. 223(3), 109–115 (2009)

    Google Scholar 

  18. Peak Centre For Human Performance. https://www.peakcentre.ca/. Accessed 20 Aug 2019

  19. Fitness Assessment. https://www.peakcentre.ca/individual-training/personal-fitness-assessment/. Accessed 20 Aug 2019

  20. Multilayer Perceptrons. http://users.ics.aalto.fi/ahonkela/dippa/node41.html. Accessed 12 Sep 2019

  21. Nicholson, C.: A beginner’s guide to multilayer perceptrons (MLP). https://skymind.ai/wiki/multilayer-perceptron#code. Accessed 12 Sept 2019

  22. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hawazin Faiz Badawi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badawi, H.F., Laamarti, F., Brunet, K., McNeely, E., El Saddik, A. (2020). Non-invasive Lactate Threshold Estimation Using Machine Learning. In: McDaniel, T., Berretti, S., Curcio, I., Basu, A. (eds) Smart Multimedia. ICSM 2019. Lecture Notes in Computer Science(), vol 12015. Springer, Cham. https://doi.org/10.1007/978-3-030-54407-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54407-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54406-5

  • Online ISBN: 978-3-030-54407-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics