Skip to main content

Neurobiology of Insomnia

  • Chapter
  • First Online:
Sleep Neurology

Abstract

The present chapter will discuss the neurobiology of insomnia. After briefly defining insomnia according to the DSM-5 and the ICSD-2 previous subtypes, prevalence of the disorder will be introduced. Then this chapter will present the sleep-wake regulation system to identify how insomnia might be developed and what is impaired in suffering individuals, especially regarding the flip-flop switch. Techniques used to study the neurobiology of insomnia such as electroencephalography (EEG), magnetic resonance imaging (MRI, fMRI), positron emission tomography (PET), and event-related potentials (ERPs) will be presented. A discussion on the different phenotypes of insomnia, including recent developments in our knowledge of short sleepers and the challenged group of insomnia sufferers (INS), will follow. Finally, the status of our understanding of daily functioning in insomnia and cortical areas involved will be briefly presented. Future directions will conclude this chapter, including an interesting perspective on attention-deficit hyperactivity disorder (ADHD) and insomnia. Note that this chapter deals only with insomnia not comorbid with any other disorders (psychiatric, mental, medical, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Frequency and amplitude are measured, respectively, in hertz (Hz) and microvolts (ÎĽV).

  2. 2.

    Note that valence and peak latency are used to label the different components. For instance, “N” refers to a negative wave and “P” refers to a positive wave, whereas N100 and N350 (or N1 and N35) refer to negative waves peaking, respectively, at about 100 or 350 ms after stimulus onset, and P100, P200, and P300 (or P1, P2, and P3) refer to positive waves peaking, respectively, at about 100, 200, or 300 ms after stimulus onset.

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  2. American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. 3rd ed. Westchester: Author; 2014.

    Google Scholar 

  3. American Academy of Sleep Medicine. International classification of sleep disorders: diagnostic and coding manual. 2nd ed. Westchester: Author; 2005.

    Google Scholar 

  4. Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, et al. Derivation of research diagnostic criteria for insomnia: report of an American Academy of sleep medicine work group. Sleep. 2004;27(8):1567–96.

    Article  PubMed  Google Scholar 

  5. Edinger JD, Krystal AD. Subtyping primary insomnia: is sleep state misperception a distinct clinical entity? Sleep Med Rev. 2003;7(3):203–14.

    Article  PubMed  Google Scholar 

  6. St-Jean G, Bastien CH. Classification of insomnia sufferers based on laboratory PSG recordings and subjective sleep reports. Sleep. 2009;32:A284.

    Google Scholar 

  7. Morin CM, LeBlanc M, Daley M, Gregoire JP, Merette C. Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med. 2006;7(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  8. Bastien CH, Vallieres A, Morin CM. Precipitating factors of insomnia. Behav Sleep Med. 2004;2(1):50–62.

    Article  PubMed  Google Scholar 

  9. Bastien CH, Vallieres A, Morin CM. Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307.

    Article  PubMed  Google Scholar 

  10. Perlis ML, Giles DE, Mendelson WB, Bootzin RR, Wyatt JK. Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. J Sleep Res. 1997;6(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  11. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015;14(5):547–58.

    Article  PubMed  Google Scholar 

  12. Harvey AG. A cognitive model of insomnia. Behav Res Ther. 2002;40(8):869–93.

    Article  CAS  PubMed  Google Scholar 

  13. Espie CA. Insomnia: conceptual issues in the development, persistence, and treatment of sleep disorder in adults. Annu Rev Psychol. 2002;53:215–43.

    Article  PubMed  Google Scholar 

  14. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–63.

    Article  CAS  PubMed  Google Scholar 

  15. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24(12):726–31.

    Article  CAS  PubMed  Google Scholar 

  16. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.

    PubMed  Google Scholar 

  17. Bastien CH. Insomnia: neurophysiological and neuropsychological approaches. Neuropsychol Rev. 2011;21(1):22–40.

    Article  PubMed  Google Scholar 

  18. Spiegelhalder K, Regen W, Feige B, Holz J, Piosczyk H, Baglioni C, et al. Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biol Psychol. 2012;91(3):329–33.

    Article  PubMed  Google Scholar 

  19. Freedman RR. EEG power spectra in sleep-onset insomnia. Electroencephalogr Clin Neurophysiol. 1986;63(5):408–13.

    Article  CAS  PubMed  Google Scholar 

  20. Merica H, Blois R, Gaillard JM. Spectral characteristics of sleep EEG in chronic insomnia. Eur J Neurosci. 1998;10(5):1826–34.

    Article  CAS  PubMed  Google Scholar 

  21. Merica H, Gaillard JM. The EEG of the sleep onset period in insomnia: a discriminant analysis. Physiol Behav. 1992;52(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  22. Maes J, Verbraecken J, Willemen M, De Volder I, van Gastel A, Michiels N, et al. Sleep misperception, EEG characteristics and autonomic nervous system activity in primary insomnia: a retrospective study on polysomnographic data. Int J Psychophysiol. 2014;91(3):163–71.

    Article  CAS  PubMed  Google Scholar 

  23. Israel B, Buysse DJ, Krafty RT, Begley A, Miewald J, Hall M. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: for some measures, one night is enough. Sleep. 2012;35(9):1285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu YM, Pietrone R, Cashmere JD, Begley A, Miewald JM, Germain A, et al. EEG power during waking and NREM sleep in primary insomnia. J Clin Sleep Med. 2013;9(10):1031–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. St-Jean G, Turcotte I, Perusse AD, Bastien CH. REM and NREM power spectral analysis on two consecutive nights in psychophysiological and paradoxical insomnia sufferers. Int J Psychophysiol. 2013;89(2):181–94.

    Article  PubMed  Google Scholar 

  26. Corsi-Cabrera M, Figueredo-Rodriguez P, del Rio-Portilla Y, Sanchez-Romero J, Galan L, Bosch-Bayard J. Enhanced frontoparietal synchronized activation during the wake-sleep transition in patients with primary insomnia. Sleep. 2012;35(4):501–11.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feige B, Al-Shajlawi A, Nissen C, Voderholzer U, Hornyak M, Spiegelhalder K, et al. Does REM sleep contribute to subjective wake time in primary insomnia? A comparison of polysomnographic and subjective sleep in 100 patients. J Sleep Res. 2008;17(2):180–90.

    Article  PubMed  Google Scholar 

  28. Riemann D, Spiegelhalder K, Nissen C, Hirscher V, Baglioni C, Feige B. REM sleep instability--a new pathway for insomnia? Pharmacopsychiatry. 2012;45(5):167–76.

    CAS  PubMed  Google Scholar 

  29. Kryger MH, Roth T, Dement WC. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier; 2005.

    Google Scholar 

  30. Krystal AD, Edinger JD, Wohlgemuth WK, Marsh GR. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep. 2002;25(6):630–40.

    PubMed  Google Scholar 

  31. Harvey AG, Tang NK. (Mis)perception of sleep in insomnia: a puzzle and a resolution. Psychol Bull. 2012;138(1):77–101.

    Article  PubMed  Google Scholar 

  32. Riemann D, Voderholzer U, Spiegelhalder K, Hornyak M, Buysse DJ, Nissen C, et al. Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep. 2007;30(8):955–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep. 2014;37(7):1189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Neylan TC, Mueller SG, Wang Z, Metzler TJ, Lenoci M, Truran D, et al. Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biol Psychiatry. 2010;68(5):494–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Noh HJ, Joo EY, Kim ST, Yoon SM, Koo DL, Kim D, et al. The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. J Clin Neurol. 2012;8(2):130–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Santarnecchi E, Del Bianco C, Sicilia I, Momi D, Di Lorenzo G, Ferrone S, et al. Age of insomnia onset correlates with a reversal of default mode network and supplementary motor cortex connectivity. Neural Plast. 2018;2018:3678534.

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Havas JA, Parimal S, Soon CS, Chee MW. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. NeuroImage. 2012;59(2):1745–51.

    Article  PubMed  Google Scholar 

  38. Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ. Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry. 2010;67(2):182–5.

    Article  PubMed  Google Scholar 

  39. Stoffers D, Altena E, van der Werf YD, Sanz-Arigita EJ, Voorn TA, Astill RG, et al. The caudate: a key node in the neuronal network imbalance of insomnia? Brain. 2014;137(Pt 2):610–20.

    Article  PubMed  Google Scholar 

  40. Drummond SP, Walker M, Almklov E, Campos M, Anderson DE, Straus LD. Neural correlates of working memory performance in primary insomnia. Sleep. 2013;36(9):1307–16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Santarnecchi E, Sicilia I, Richiardi J, Vatti G, Polizzotto NR, Marino D, et al. Altered cortical and subcortical local coherence in obstructive sleep apnea: a functional magnetic resonance imaging study. J Sleep Res. 2013;22(3):337–47.

    Article  PubMed  Google Scholar 

  42. Spiegelhalder K, Regen W, Prem M, Baglioni C, Nissen C, Feige B, et al. Reduced anterior internal capsule white matter integrity in primary insomnia. Hum Brain Mapp. 2014;35(7):3431–8.

    Article  PubMed  Google Scholar 

  43. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564–83.

    Article  PubMed  Google Scholar 

  44. Nofzinger EA. Advancing the neurobiology of insomnia, a commentary on: “functional imaging of the sleeping brain” by Drummond et al. Sleep Med Rev. 2004;8(3):243–7.

    Article  PubMed  Google Scholar 

  45. Baglioni C, Spiegelhalder K, Regen W, Feige B, Nissen C, Lombardo C, et al. Insomnia disorder is associated with increased amygdala reactivity to insomnia-related stimuli. Sleep. 2014;37(12):1907–17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baglioni C, Spiegelhalder K, Lombardo C, Riemann D. Sleep and emotions: a focus on insomnia. Sleep Med Rev. 2010;14(4):227–38.

    Article  PubMed  Google Scholar 

  47. Espie CA, Broomfield NM, MacMahon KM, Macphee LM, Taylor LM. The attention-intention-effort pathway in the development of psychophysiologic insomnia: a theoretical review. Sleep Med Rev. 2006;10(4):215–45.

    Article  PubMed  Google Scholar 

  48. Leerssen J, Wassing R, Ramautar JR, Stoffers D, Lakbila-Kamal O, Perrier J, et al. Increased hippocampal-prefrontal functional connectivity in insomnia. Neurobiol Learn Mem. 2019;160:144–50.

    Article  PubMed  Google Scholar 

  49. Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography: basic sciences. London: Springer; 2005.

    Book  Google Scholar 

  50. Nofzinger EA, Buysse DJ, Germain A, Price JC, Miewald JM, Kupfer DJ. Functional neuroimaging evidence for hyperarousal in insomnia. Am J Psychiatry. 2004;161(11):2126–8.

    Article  PubMed  Google Scholar 

  51. Spiegelhalder K, Nissen C, Riemann D. Clinical sleep-wake disorders II: focus on insomnia and circadian rhythm sleep disorders. Handb Exp Pharmacol. 2019;253:261–76.

    Article  CAS  PubMed  Google Scholar 

  52. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–52.

    Article  CAS  PubMed  Google Scholar 

  53. Buysse DJ, Germain A, Hall M, Monk TH, Nofzinger EA. A neurobiological model of insomnia. Drug Discov Today Dis Model. 2011;8(4):129–37.

    Article  Google Scholar 

  54. Blackwood DH, Muir WJ. Cognitive brain potentials and their application. Br J Psychiatry Suppl. 1990;9:96–101.

    Article  Google Scholar 

  55. Muller-Gass A, Campbell K. The processing of infrequently-presented low-intensity stimuli during natural sleep: an event-related potential study. Noise Health. 2010;12(47):120–8.

    Article  PubMed  Google Scholar 

  56. Hull JS. Event-related potentials during the wake/sleep transition in adults with and without primary insomnia [Dissertation]. University of Southern Mississippi; 1993.

    Google Scholar 

  57. Colrain IM, Campbell KB. The use of evoked potentials in sleep research. Sleep Med Rev. 2007;11(4):277–93.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL. Effect of spatial cueing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform. 1994;20(4):887–904.

    Article  CAS  PubMed  Google Scholar 

  59. Campbell K. Event-related potentials as a measure of sleep disturbance: a tutorial review. Noise Health. 2010;12(47):137–53.

    Article  PubMed  Google Scholar 

  60. Loewy DH, Bootzin RR. Event-related potentials measures of information processing in insomniacs at bedtime and during sleep. Sleep. 1998;21(Suppl. 1):98.

    Google Scholar 

  61. Loewy DH, Burdik RS, Al-Shajlawi A, Franzen PL, Bootzin RR. Enhanced information processing at the peri-sleep onset period in insomniacs as measured by event-related potentials. Sleep. 1999;22(Suppl. 1):S152.

    Google Scholar 

  62. Bastien CH, St-Jean G, Morin CM, Turcotte I, Carrier J. Chronic psychophysiological insomnia: hyperarousal and/or inhibition deficits? An ERPs investigation. Sleep. 2008;31(6):887–98.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bastien CH. ERP measures during wakefulness and sleep-onset in psychophysiological and paradoxical insomnia sufferers. J Sleep Res. 2008;17:65.

    Google Scholar 

  64. Turcotte I, St-Jean G, Bastien CH. Are individuals with paradoxical insomnia more hyperaroused than individuals with psychophysiological insomnia? Event-related potentials measures at the peri-onset of sleep. Int J Psychophysiol. 2011;81(3):177–90.

    Article  PubMed  Google Scholar 

  65. Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31.

    Article  PubMed  Google Scholar 

  66. Stepanski E, Zorick F, Roehrs T, Young D, Roth T. Daytime alertness in patients with chronic insomnia compared with asymptomatic control subjects. Sleep. 1988;11(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  67. Perusse AD, Turcotte I, St-Jean G, Ellis J, Hudon C, Bastien CH. Types of primary insomnia: is hyperarousal also present during napping? J Clin Sleep Med. 2013;9(12):1273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vgontzas AN, Fernandez-Mendoza J, Liao D, Bixler EO. Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev. 2013;17(4):241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Mastorakos G, Vela-Bueno A, et al. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–94.

    Article  CAS  PubMed  Google Scholar 

  70. Vgontzas AN, Tsigos C, Bixler EO, Stratakis CA, Zachman K, Kales A, et al. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res. 1998;45(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez-Mendoza J, Calhoun S, Bixler EO, Pejovic S, Karataraki M, Liao D, et al. Insomnia with objective short sleep duration is associated with deficits in neuropsychological performance: a general population study. Sleep. 2010;33(4):459–65.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Varkevisser M, Kerkhof GA. Chronic insomnia and performance in a 24-h constant routine study. J Sleep Res. 2005;14(1):49–59.

    Article  PubMed  Google Scholar 

  73. Covassin N, de Zambotti M, Sarlo M, De Min TG, Sarasso S, Stegagno L. Cognitive performance and cardiovascular markers of hyperarousal in primary insomnia. Int J Psychophysiol. 2011;80(1):79–86.

    Article  PubMed  Google Scholar 

  74. Kwan Y, Baek C, Chung S, Kim TH, Choi S. Resting-state quantitative EEG characteristics of insomniac patients with depression. Int J Psychophysiol. 2018;124:26–32.

    Article  PubMed  Google Scholar 

  75. Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, et al. Wake high-density electroencephalographic Spatiospectral signatures of insomnia. Sleep. 2016;39(5):1015–27.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Corsi-Cabrera M, Rojas-Ramos OA, del Rio-Portilla Y. Waking EEG signs of non-restoring sleep in primary insomnia patients. Clin Neurophysiol. 2016;127(3):1813–21.

    Article  PubMed  Google Scholar 

  77. Wolynczyk-Gmaj D, Szelenberger W. Waking EEG in primary insomnia. Acta Neurobiol Exp (Wars). 2011;71(3):387–92.

    Google Scholar 

  78. Oades RD, Dittmann-Balcar A, Schepker R, Eggers C, Zerbin D. Auditory event-related potentials (ERPs) and mismatch negativity (MMN) in healthy children and those with attention-deficit or Tourette/tic symptoms. Biol Psychol. 1996;43(2):163–85.

    Article  CAS  PubMed  Google Scholar 

  79. Killgore WD, Schwab ZJ, Kipman M, Deldonno SR, Weber M. Insomnia-related complaints correlate with functional connectivity between sensory-motor regions. Neuroreport. 2013;24(5):233–40.

    Article  PubMed  Google Scholar 

  80. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum Brain Mapp. 2010;31(6):904–16.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wynchank D, Bijlenga D, Beekman AT, Kooij JJS, Penninx BW. Adult attention-deficit/hyperactivity disorder (ADHD) and insomnia: an update of the literature. Curr Psychiatry Rep. 2017;19(12):98.

    Article  PubMed  Google Scholar 

  82. Barry RJ, Clarke AR, Johnstone SJ, McCarthy R, Selikowitz M. Electroencephalogram theta/beta ratio and arousal in attention-deficit/hyperactivity disorder: evidence of independent processes. Biol Psychiatry. 2009;66(4):398–401.

    Article  PubMed  Google Scholar 

  83. Arns M, Conners CK, Kraemer HC. A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J Atten Disord. 2013;17(5):374–83.

    Article  PubMed  Google Scholar 

  84. Clarke AR, Barry RJ, Dupuy FE, McCarthy R, Selikowitz M, Johnstone SJ. Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: a disorder of arousal? Int J Psychophysiol. 2013;89(3):314–9.

    Article  PubMed  Google Scholar 

  85. Clarke AR, Barry RJ, McCarthy R, Selikowitz M. EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2001;112(11):2098–105.

    Article  CAS  PubMed  Google Scholar 

  86. Arns M, Swatzyna RJ, Gunkelman J, Olbrich S. Sleep maintenance, spindling excessive beta and impulse control: an RDoC arousal and regulatory systems approach? Neuropsychiatric Electrophysiology. 2015;1(1):5.

    Article  Google Scholar 

  87. Cervena K, Dauvilliers Y, Espa F, Touchon J, Matousek M, Billiard M, et al. Effect of cognitive behavioural therapy for insomnia on sleep architecture and sleep EEG power spectra in psychophysiological insomnia. J Sleep Res. 2004;13(4):385–93.

    Article  PubMed  Google Scholar 

  88. Altena E, Van Der Werf YD, Sanz-Arigita EJ, Voorn TA, Rombouts SA, Kuijer JP, et al. Prefrontal hypoactivation and recovery in insomnia. Sleep. 2008;31(9):1271–6.

    PubMed  PubMed Central  Google Scholar 

  89. Wei Y, Colombo MA, Ramautar JR, Blanken TF, van der Werf YD, Spiegelhalder K, et al. Sleep stage transition dynamics reveal specific stage 2 vulnerability in insomnia. Sleep. 2017;40(9) https://doi.org/10.1093/sleep/zsx117.

  90. Schwartz JRL, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol. 2008;6(4):367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol. 2017;44:186–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of wakefulness and sleep. Neuron. 2017;93(4):747–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res. 2017;118:74–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CĂ©lyne H. Bastien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastien, C.H., Provencher, T., Lebel, J., Bolduc-Landry, R. (2021). Neurobiology of Insomnia. In: DelRosso, L.M., Ferri, R. (eds) Sleep Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-54359-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54359-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54358-7

  • Online ISBN: 978-3-030-54359-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics