Skip to main content

Electromechanical Mode Estimation in Power System Using a Novel Nonstationary Approach

  • Chapter
  • First Online:
Wide Area Power Systems Stability, Protection, and Security

Part of the book series: Power Systems ((POWSYS))

Abstract

The modern power grid protection system should have considerable operational flexibility and resiliency to hedge the variability and uncertainty of high dimensional dependencies. The use of wide-area monitoring systems (WAMS) in the smart grid enables the real-time supervision of power system oscillations. With the help of advanced signal processing methods and big data analytics, time-synchronized phasor measurements can be used to extract valuable information concerning the electromechanical modal properties of power system oscillations. This chapter introduces a novel method for identifying electromechanical inter-area oscillation modes with the help of wide-area measurement data. Variational mode decomposition (VMD) can be considered as a flexible signal processing technique on the wide-area phasor measurements in power oscillation analysis. For the real-time operation, it is challenging to preset the value of the mode number in the VMD process. This issue has been addressed by improving the strategy for VMD, which is presented in this chapter. The first stage involves the use of Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique to generate intrinsic mode functions and gives indexing based on the correlation factor. Depending on the indexing, the mode number is selected for the second stage VMD process. Techniques such as spectral analysis and Hilbert transform are quite suitable for the estimation of modal parameters. The study is based on significant features of power oscillations, such as determination of damping ratio, amplitude, and frequency. The identification and estimation of low-frequency modes have been performed using this improvised VMD technique, and the results have been compared with those obtained using empirical mode decomposition approaches. The proposed approach is also validated using real-time data obtained from load dispatch centers. The results indicate the effectiveness of non-linear, nonstationary analysis methods for analysing the low-frequency modes and provide reliable validation of these algorithms in analysing real-time data patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Rogers, Power System Oscillations (Kluwer Academic Publishers, Boston, 2000)

    Book  Google Scholar 

  2. P. Kundur, Power System Stability and Control (McGraw-Hill Inc., New York, 1994)

    Google Scholar 

  3. A.R. Messina, Inter Area Oscillations in Power System-A Non-Linear and Nonstationary Perspective Power Electronics and Power Systems. (Springer, US, 2009)

    Book  Google Scholar 

  4. B. Wang, K. Sun, Location methods of oscillation sources in power systems: a survey. J. Mod. Power Syst. Clean Energy 5(2), 151–159 (2017)

    Article  Google Scholar 

  5. J.F. Hauer, C.J.Demeure, L.L.Scharf, Initial results in Prony analysis of power system response signals. IEEE Trans. Power Syst. 5(1), 80–89 (1990)

    Google Scholar 

  6. M. Khodadadi Arpanahi, M. Kordi, R. Torkzadeh, H. Haes Alhelou, P. Siano, An augmented prony method for power system oscillation analysis using synchrophasor data. Energies 12(7), 1267 (2019)

    Google Scholar 

  7. T.K. Sarkar, O. Pereira, Using the matrix pencil method to estimate the parameters of a sum of complex exponentials 37(5), 48–55 (1994)

    Google Scholar 

  8. K.C. Lee, K.P Poon, Analysis of power system dynamic oscillations with heat phenomenon by Fourier transformation. IEEE Trans. Power Syst. 5(1), 148–153 (1990)

    Google Scholar 

  9. M. Yazdanian, A. Mehrizi-Sani, M. Mojiri, Estimation of electromechanical oscillation parameters using an extended Kalman filter. IEEE Trans. Power Syst. 30(6), 2994–3002 (2015)

    Article  Google Scholar 

  10. J.W. Pierre, D.J. Trudnowski, M.K. Donnelly, Initial results in electromechanical mode identification from ambient data. IEEE Trans. Power Syst. 12(3), 1245–1251 (1997)

    Google Scholar 

  11. N. Zhou, D.J. Trudnowski, J.W. Pierre, et al., Electromechanical mode online estimation using regularized robust RLS methods. IEEE Trans. Power Syst. 23(4), 1670–1680 (2008)

    Google Scholar 

  12. I.Y.H. Gu, M.H.J. Bollen, Estimating inter harmonics by using sliding window ESPRIT. IEEE Trans. Power Deliv. 23(1), 13–23 (2008)

    Article  Google Scholar 

  13. L. Dosiek, N. Zhou, J.W. Pierre, Z. Huang, D.J. Trudnowski, Mode shape estimation algorithms under ambient conditions: a comparative review. IEEE Trans. Power Syst. 28(2), 779–787 (2013)

    Google Scholar 

  14. T.Jiang, H. Yuan, H. Jia, et al. Stochastic subspace identification-based approach for tracking inter-area oscillatory modes in bulk power system utilizing synchrophasor measurements. IET Gener. Transm. Distrib. 9(15), 2409–2418 (2015)

    Google Scholar 

  15. S.A. Nezam Sarmadi, V. Venkatasubramanian, Electromechanical mode estimation using recursive adaptive stochastic subspace identification. IEEE Trans. Power Syst. 29(1), 349–358 (2014)

    Google Scholar 

  16. J.Sanchez-Gasca, D.Trudnowski, Identification of electromechanical modes in power system. IEEE Task Force on Identification of Electromechanical Modes of the Power System Stability, Power & Energy Society, Technical report (2012)

    Google Scholar 

  17. F. Shir, B. Mohammadi ivatloo, Identification of inter-area oscillations using wavelet transform and phasor measurement unit data. Int. Trans. Electr. Energy Syst. 25(11), 2831–2846 (2015)

    Google Scholar 

  18. N.E. Huang, Z. Wu, A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46(2), 1–23 (2008)

    Article  Google Scholar 

  19. H. Xiao, J. Wei, H. Liu, Q. Li, Y. Shi, Identification method for power system low-frequency oscillations based on improved VMD and Teager–Kaiser energy operator. IET Gener. Transm. Distrib. 11(16), 4096–4103 (2017)

    Article  Google Scholar 

  20. R. Deering, J.F. Kaiser, The use of a masking signal to improve empirical mode decomposition, in Proceedings. (ICASSP ‘05). IEEE International Conference on Acoustics, Speech, and Signal Processing (2005)

    Google Scholar 

  21. H. Chen, P. Chen, W. Chen, C. Wu, J. Li, J. Wu, Wind turbine gearbox fault diagnosis based on improved EEMD and hilbert square demodulation. Appl. Sci. 7(128) (2017)

    Google Scholar 

  22. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)

    Google Scholar 

  23. M.K. Jena, S.R. Samantaray, B.K. Panigrahi, Variational mode decomposition-based power system disturbance assessment to enhance WA situational awareness and post-mortem analysis. IET Gener. Transm. Distrib. 11(13), 3287–3298 (2017)

    Article  Google Scholar 

  24. R. Mario, A. Paterninaa, R.K. Tripathy, A. Zamora-Mendez, D. Dottad, Identification of electromechanical oscillatory modes based on variational mode decomposition . Electr. Power Syst. Res. 167, 71–85 (2019)

    Article  Google Scholar 

  25. D.S.Laila, A. Messina, B.C. Pal, A refined Hilbert–Huang transform with applications to inter-area oscillation monitoring. IEEE Trans. Power Syst. 24(2), 610–619 (2009)

    Google Scholar 

  26. L. Vanfretti, S. Bengtsson, J.O. Gjerde, Preprocessing synchronized phasor measurement data for spectral analysis of electromechanical oscillations in the Nordic Grid. Int. Trans. Electr. Energy Syst. 25, 348–358 (2015)

    Google Scholar 

  27. M.A. Colominas, G. Schlotthauer, M.E. Torres, Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Signal Proc. Control. 14, 19–29 (2014)

    Article  Google Scholar 

  28. C. Lu, S. Yan, Z. Lin, A unified alternating direction method of multipliers by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 527–541 (2018)

    Article  Google Scholar 

  29. D. Lauria, C. Pisani, On Hilbert transform methods for low-frequency oscillations detection. IET Gener. Transm. Distrib. 8(6), 1061–1074 (2014)

    Google Scholar 

  30. B. Pal, B.Chaudhuri, Robust Control in Power Systems (Springer, New York, 2005)

    Google Scholar 

  31. Posoco, Report on power system oscillations experienced in Indian Grid on 9th, 10th,11th and 12th August 2014, Task force report (Power System Operation Corporation Limited, New Delhi, 2014)

    Google Scholar 

  32. A. Singh, B.B. Singh, M.P. Reddy, et al., Report on low frequency oscillation in Indian power system, Task force report, March 2016 (Power System Operation Corporation Limited, New Delhi, 2016)

    Google Scholar 

  33. H.H. Alhelou, M.H. Golshan, J. Askari-Marnani, Robust sensor fault detection and isolation scheme for interconnected smart power systems in presence of RER and EVs using unknown input observer. Int. J. Electr. Power Energy Syst. 1(99), 682–694 (2018)

    Article  Google Scholar 

  34. H.H. Alhelou, M.E. Hamedani-Golshan, R. Zamani, E. Heydarian-Forushani, P. Siano, Challenges and opportunities of load frequency control in conventional, modern and future smart power systems: A comprehensive review. Energies 11(10), 2497 (2018)

    Article  Google Scholar 

  35. H. Haes Alhelou, M.E. Hamedani Golshan, F.M. Hajiakbari, Wind driven optimization algorithm application to load frequency control in interconnected power systems considering GRC and GDB nonlinearities. Electr. Power Compon. Syst. 46(11–12), 1223–1238 (2018)

    Article  Google Scholar 

  36. H.H. Alhelou, M.E. Hamedani-Golshan, E. Heydarian-Forushan, A.S. Al-Sumaiti, P. Siano, Decentralized fractional order control scheme for LFC of deregulated nonlinear power systems in presence of EVs and RER, in 2018 International Conference on Smart Energy Systems and Technologies (SEST), 10 Sept 2018, pp. 1–6 (IEEE, 2018)

    Google Scholar 

  37. H. Haes Alhelou, M.E. Hamedani-Golshan, T.C. Njenda, P. Siano, A survey on power system blackout and cascading events: research motivations and challenges. Energies 12(4), 682 (2019)

    Article  Google Scholar 

  38. H. Haes Alhelou, M.E. Hamedani Golshan, T.C. Njenda, P. Siano, Wams-based online disturbance estimation in interconnected power systems using disturbance observer. Appl. Sci. 9(5), 990 (2019)

    Article  Google Scholar 

  39. H.H. Alhelou, M.E. Golshan, N.D. Hatziargyriou, A decentralized functional observer based optimal LFC considering unknown inputs, uncertainties, and cyber-attacks. IEEE Trans. Power Syst. 34(6), 4408–4417 (2019)

    Article  Google Scholar 

  40. H.H. Alhelou, M.E. Golshan, N.D. Hatziargyriou, Deterministic dynamic state estimation-based optimal lfc for interconnected power systems using unknown input observer. IEEE Trans. Smart Grid (2019)

    Google Scholar 

  41. H.H. Alhelou, M.E. Golshan, T.C. Njenda, N.D. Hatziargyriou, An overview of UFLS in conventional, modern, and future smart power systems: challenges and opportunities. Electr. Power Syst. Res. 1(179), 106054 (2020)

    Article  Google Scholar 

  42. H.H. Alhelou, S.J. Mirjalili, R. Zamani, P. Siano, Assessing the optimal generation technology mix determination considering demand response and EVs. Int. J. Electr. Power Energy Syst. 1(119), 105871 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Power System Operation Corporation Limited, Bangalore (India), for their technical assistance and providing PMU data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rahul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahul, S., Koshy, S., Sunitha, R. (2021). Electromechanical Mode Estimation in Power System Using a Novel Nonstationary Approach. In: Haes Alhelou, H., Abdelaziz, A.Y., Siano, P. (eds) Wide Area Power Systems Stability, Protection, and Security. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-54275-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54275-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54274-0

  • Online ISBN: 978-3-030-54275-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics