Skip to main content

Quantile and Copula Spectrum: A New Approach to Investigate Cyclical Dependence in Economic Time Series

  • Chapter
  • First Online:
Recent Econometric Techniques for Macroeconomic and Financial Data

Abstract

This chapter presents a survey of some recent methods used in economics and finance to account for cyclical dependence and account for their multifaced dynamics: nonlinearities, extreme events, asymmetries, non-stationarity, time-varying moments. To circumvent the caveats of the standard spectral analysis, new tools are now used based on copula spectrum, quantile spectrum and Laplace periodogram in both non-parametric and parametric contexts. The chapter presents a comprehensive overview of both theoretical and empirical issues as well as a computational approach to explain how the methods can be implemented using the R Package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When \(\left\{ {\varepsilon_{t} } \right\}\) is a white noise process with a finite variance \(\sigma^{2}\), \(L(\omega ) = \eta^{2}\) \(( = 1/\left( {4f^{2} (0)} \right)\) and \(G(\omega ) = \sigma^{2}\). Obviously, to obtain the spectrum as the mean of the asymptotic distribution, the ordinary periodogram needs the existence of a finite variance, while the Laplace periodogram needs only the condition of \(f(0) > 0\).

  2. 2.

    \(I_{n,R}^{{\tau_{1} ,\tau_{2} }} (\omega )\) is one-variate case of \(I_{n,R}^{{l_{1} l_{2} }} \left( {\omega ; \tau_{1} , \tau_{2} } \right)\) for \(\varvec{X}_{t} = X_{t,1}\) in Eq. (41), which is called the CR periodogram. Its smoothed version \(\widehat{G}_{n,R} \left( {\omega ;\tau_{1} ,\tau_{2} } \right)\) is also a special case of \(\widehat{G}_{n, R}^{{l_{1} l_{2} }} \left( {\omega ; \tau_{1} , \tau_{2} } \right)\) in Eq. (43).

  3. 3.

    The smoothed rank-based Laplace periodogram is defined as \(\hat{f}_{n,R} \left( {\omega ;\tau_{1} ,\tau_{2} } \right) : = \frac{2\pi }{n}\sum\nolimits_{s = 1}^{n - 1} W_{n} \left( {\omega - 2\pi s/n} \right)L_{{n,\tau_{1} ,\tau_{2} }}^{R} \left( {\frac{2\pi s}{n}} \right)\), where \(W_{n}\) denotes a sequence of weight functions.

References

  • Baruník, J., & Kley, T. (2019). Quantile coherency: A general measure for dependence between cyclical economic variables. Econometrics Journal, 22(2), 131–152.

    Article  Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Dette, H., Hallin, M., Kley, T., & Volgushev, S. (2015). Of copulas, quantiles, ranks and spectra: An L1-approach to spectral analysis. Bernoulli, 21(2), 781–831.

    Article  Google Scholar 

  • Hagemann, A. (2013). Robust spectral analysis. arXiv e-prints. https://arxiv.org/abs/1111.1965.

  • Hill, J. B., & McCloskey, A. (2014). Heavy tail robust frequency domain estimation, mimeo.

    Google Scholar 

  • Hong, Y. (1999). Hypothesis testing in time series via the empirical characteristic function: A general spectral density approach. Journal of the American Statistical Association, 94(448), 1201–1220.

    Article  Google Scholar 

  • Hong, Y. (2000). Generalized spectral tests for serial dependence. Journal of the Royal Statistical Association. Series B, 62, 557–574.

    Article  Google Scholar 

  • Katkovnik, V. (1998). Robust M-periodogram. IEEE Transactions on Signal Processing, 46(11), 3104–3109.

    Article  Google Scholar 

  • Kleiner, B., Martin, R. D., & Thomson, D. J. (1979). Robust estimation of power spectra. Journal of the Royal Statistical Society B, 41(3), 313–351.

    Google Scholar 

  • Kley, T. (2016). Quantile-based spectral analysis in an object-oriented framework and a reference implementation in R: The Quantspect package. Journal of Statistical Software, 70(3), 1–27.

    Article  Google Scholar 

  • Kley, T., Volgushev, S., Dette, H., & Hallin, M. (2016). Quantile spectral processes: Asymptotic analysis and inference. Bernoulli, 22(3), 1770–1807.

    Article  Google Scholar 

  • Klüppelberg, C., & Mikosch, T. (1994). Some limit theory for the self-normalized periodogram of stable processes. Scandinavian Journal of Statistics, 21(4), 485–491.

    Google Scholar 

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lee, J., & Subba Rao, S. S. (2012). The quantile spectral density and comparison-based tests for nonlinear time series. arXiv e-prints. https://arxiv.org/abs/1112.2759.

  • Li, T.-H. (2008). Laplace periodogram for time series analysis. Journal of the American Statistical Association, 103(482), 757–768.

    Article  Google Scholar 

  • Li, T.-H. (2012). Quantile periodograms. Journal of the American Statistical Association, 107(498), 765–776.

    Article  Google Scholar 

  • Li, T.-H. (2013). Time series with mixed spectra: Theory and methods. Boca Raton: CRC Press.

    Google Scholar 

  • Li, T.-H. (2014). Quantile periodogram and time-dependent variance. Journal of Time Series Analysis, 35(4), 322–340.

    Article  Google Scholar 

  • Li, T. H. (2019). Quantile-frequency analysis and spectral divergence metrics for diagnostic checks of time series with nonlinear dynamics. arXiv:1908.02545.

  • Lim, Y., & Oh, H.-S. (2015). Composite quantile periodogram for spectral analysis. Journal of Time Series Analysis, 37, 195–211.

    Article  Google Scholar 

  • Mikosch, T. (1998). Periodogram estimates from heavy-tailed data. In R. A. Adler, R. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails: Statistical techniques for analyzing heavy tailed distributions (pp. 241–258). Boston: Birkhäuser.

    Google Scholar 

  • Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110(C), 4–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Matsuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dufrénot, G., Matsuki, T., Sugimoto, K. (2021). Quantile and Copula Spectrum: A New Approach to Investigate Cyclical Dependence in Economic Time Series. In: Dufrénot, G., Matsuki, T. (eds) Recent Econometric Techniques for Macroeconomic and Financial Data. Dynamic Modeling and Econometrics in Economics and Finance, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-54252-8_1

Download citation

Publish with us

Policies and ethics