Skip to main content

Fundamental Theories in Neuroscience: Why Neural Darwinism Encompasses Neural Reuse

  • Chapter
  • First Online:
Neural Mechanisms

Part of the book series: Studies in Brain and Mind ((SIBM,volume 17))

Abstract

Various theories have been put forward to provide theoretical unification in neuroscience. The “data rich and theory poor” state of neuroscience makes such theories worth pursuing. An overarching theory can facilitate data interpretation and provide a general framework for explanation and understanding across the various subfields of neuroscience. Neural reuse is a recent and increasingly popular attempt at such a unifying theory. At its core, neural reuse is a claim about the brain’s architecture that centers on the idea that brain regions are used for multiple tasks across multiple domains. Here, I claim that although neural reuse has many merits, it does not provide a fundamental theory of brain structure and function. Neural reuse is appropriately understood as a general organizational principle that is encompassed by a more fundamental theory. That theory is Neural Darwinism, which applies broadly Darwinian selectionist principles across scales of investigation to explain and understand brain structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M.-E., et al. (2013). BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340, 1472–1475.

    Article  Google Scholar 

  • Anderson, M. L. (2007). Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese, 159(3), 329–345.

    Article  Google Scholar 

  • Anderson, M. L. (2008). Circuit sharing and the implementation of intelligent systems. Connection Science, 20, 239–251.

    Article  Google Scholar 

  • Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.

    Article  Google Scholar 

  • Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Anderson, M. L. (2015). Mining the brain for a new taxonomy of the mind. Philosophy Compass, 10, 68–77.

    Article  Google Scholar 

  • Anderson, M. L. (2016). Précis of after phrenology: Neural reuse and the interactive brain. Behavioral and Brain Sciences, 39, 1–45. https://doi.org/10.1017/S0140525X15000631.

    Article  Google Scholar 

  • Anderson, M. L., & Pessoa, L. (2011). Quantifying the diversity of neural activations in individual brain regions. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd annual conference of the cognitive science society (pp. 2421–2426). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Anderson, M. L., Kinnison, J., & Pessoa, L. (2013). Describing functional diversity of brain regions and brain networks. NeuroImage, 73, 50–58.

    Article  Google Scholar 

  • Ascoli, G. A. (2002). Computing the brain and the computing brain. In G. A. Ascoli (Ed.), Computational neuroanatomy: Principles and methods (pp. 3–23). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., & Saxe, R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proceedings of the National Academy of Sciences, 108(11), 4429–4434.

    Article  Google Scholar 

  • Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: Historical roots and evolution meaning. Experimental Brain Research, 192, 307–319.

    Article  Google Scholar 

  • Bordens, K. S., & Abbott, B. B. (2014). Research design and methods: A process approach (9th ed.). New York: McGraw-Hill Education.

    Google Scholar 

  • Bressler, S. L., & Kelso, J. A. S. (2016). Coordination dynamics cognitive neuroscience. Frontiers in Neuroscience, 10(397), 1–7. https://doi.org/10.3389/fnins.2016.00397.

    Article  Google Scholar 

  • Brigandt, I. (2010). Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology. Erkenntnis, 73(3), 295–311.

    Article  Google Scholar 

  • Carruthers, P. (2006). The architecture of the mind: Massive modularity and the flexibility of thought. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Cat, J. (2017). The unity of science. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (fall 2017 edition). Retrieved May 15, 2019 from https://plato.stanford.edu/archives/fall2017/entries/scientific-unity/

  • Chervyakov, A. V., Sinitsyn, D. O., & Piradov, M. A. (2016). Variability of neuronal responses: Types and functional significance in neuroplasticity and neural Darwinism. Frontiers in Human Neuroscience, 10, 603. https://doi.org/10.3389/fnhum.2016.00603.

    Article  Google Scholar 

  • Churchland, P. S. (1994). Can neurobiology teach us anything about consciousness? Proceedings and Addresses of the American Philosophical Association, 67, 23–40.

    Article  Google Scholar 

  • Churchland, P. S., & Sejnowski, T. J. (2016). Blending computational and experimental neuroscience. Nature Reviews: Neuroscience, 17, 667–668.

    Article  Google Scholar 

  • Cosmides, L., & Tooby. (1987). From evolution to behavior: Evolutionary psychology as the missing link. In J. Dupre (Ed.), The latest on the best: Essays on evolution and optimality (pp. 277–306). Cambridge, MA: MIT Press.

    Google Scholar 

  • D’Souza, D., & Karmiloff-Smith, A. (2016). Why a developmental perspective is critical for understanding human cognition. Behavioral and Brain Sciences, 39, 11–13.

    Google Scholar 

  • Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain: A Fyssen Foundation symposium (pp. 133–157). Cambridge, MA: MIT Press.

    Chapter  Google Scholar 

  • Doya, K., Ishii, S., Pouget, A., & Rao, R. P. (Eds.). (2007). Bayesian brain: Probabilistic approaches to neural coding. Cambridge, MA: MIT press.

    Google Scholar 

  • Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • Edelman, G. M. (1988). Topobiology: An introduction to molecular embryology. New York: Basic Books.

    Google Scholar 

  • Edelman, G. M. (1989). The remembered present: A biological theory of consciousness. New York: Basic Books.

    Google Scholar 

  • Edelman, G. M. (2003). Naturalizing consciousness: A theoretical framework. Proceedings of the National Academy of Sciences, 100, 5520–5524.

    Article  Google Scholar 

  • Edelman, G. M. (2006). The embodiment of mind. Daedalus, Summer, 23–32.

    Google Scholar 

  • Edelman, G. M., & Gally, J. A. (1967). Somatic recombination of duplicated genes: An hypothesis on the origin of antibody diversity. Proceedings of the National Academy of Sciences, 57, 353–358.

    Article  Google Scholar 

  • Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences, 98, 13763–13768. https://doi.org/10.1073/pnas.231499798.

    Article  Google Scholar 

  • Edelman, G. M., & Gally, J. A. (2013). Reentry: A key mechanism for integration of brain function. Frontiers in Integrative Neuroscience, 7, 63. https://doi.org/10.3389/fnint.2013.00063.

    Article  Google Scholar 

  • Edelman, G. M., & Tononi, G. (2000). A universe of consciousness. New York: Basic Books.

    Google Scholar 

  • Edelman, G. M., Gally, J. A., & Baars, B. J. (2011). Biology of consciousness. Frontiers in Psychology, 2(4), 1–7. https://doi.org/10.3389/fpsyg.2011.00004.

    Article  Google Scholar 

  • Érdi, P. (2008). Complexity explained. Berlin: Springer.

    Book  Google Scholar 

  • Favela, L. H. (2009). Biological theories of consciousness: The search for experience. (Thesis). San Diego State University.

    Google Scholar 

  • Favela, L. H. (2014). Radical embodied cognitive neuroscience: Addressing “grand challenges” of the mind sciences. Frontiers in Human Neuroscience, 8, 796. https://doi.org/10.3389/fnhum.2014.00796.

    Article  Google Scholar 

  • Fernando, C., Karishma, K. K., & Szathmáry, E. (2008). Copying and evolution of neuronal topology. PLoS One, 3(11), e3775.

    Article  Google Scholar 

  • Fodor, J. A. (1998). Concepts: Where cognitive science went wrong. New York: Oxford University Press.

    Book  Google Scholar 

  • Freeman, W. J. (1975). Mass action in the nervous system. New York: Academic.

    Google Scholar 

  • Freeman, W. J. (2005). A field-theoretic approach to understanding scale-free neocortical dynamics. Biological Cybernetics, 92(6), 350–359.

    Article  Google Scholar 

  • Frégnac, Y. (2017). Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain? Science, 358(6362), 470–477.

    Article  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.

    Article  Google Scholar 

  • Fuchs, E., & Flugge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014, 541870, 1–10.

    Article  Google Scholar 

  • Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317–333.

    Article  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240–9245.

    Article  Google Scholar 

  • Goldinger, S. D., Papesh, M. H., Barnhart, A. S., Hansen, W. A., & Hout, M. C. (2016). The poverty of embodied cognition. Psychonomic Bulletin & Review, 23(4), 959–978.

    Article  Google Scholar 

  • Grumet, M., & Edelman, G. M. (1988). Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanism. The Journal of Cell Biology, 106, 487–503.

    Article  Google Scholar 

  • Hawkins, J., Lewis, M., Klukas, M., Purdy, S., & Ahmad, S. (2019). A framework for intelligence and cortical function based on grid cells in the neocortex. Frontiers in Neural Circuits, 12, 121. https://doi.org/10.3389/fncir.2018.00121.

    Article  Google Scholar 

  • He, B., Coleman, T., Genin, G. M., Glover, G., Hu, X., Johnson, N., et al. (2013). Grand challenges in mapping the human brain: NSF workshop report. IEEE Transactions on Biomedical Engineering, 60(11), 2983–2992.

    Article  Google Scholar 

  • Hurley, S. L. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31(1), 1–22.

    Article  Google Scholar 

  • Izhikevich, E. M. (2006). Polychronization: Computation with spikes. Neural Computation, 18(2), 245–282.

    Article  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge, MA: MIT Press.

    Google Scholar 

  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences, 105(9), 3593–3598.

    Article  Google Scholar 

  • Klein, C. (2010). Redeployed functions versus spreading activation: A potential confound. Behavioral and Brain Sciences, 33(4), 280–281.

    Article  Google Scholar 

  • Krichmar, J. L., & Edelman, G. M. (2002). Machine psychology: Autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cerebral Cortex, 12(8), 818–830.

    Article  Google Scholar 

  • Krichmar, J. L., & Edelman, G. M. (2005). Brain-based devices for the study of nervous systems and the development of intelligent machines. Artificial Life, 11(1–2), 63–77.

    Article  Google Scholar 

  • Landhuis, E. (2017). Neuroscience: Big brain, big data. Nature, 541, 559–561.

    Article  Google Scholar 

  • Leversen, J. S., Haga, M., & Sigmundsson, H. (2012). From children to adults: Motor performance across the life-span. PLoS One, 7(6), e38830.

    Article  Google Scholar 

  • Mayr, O. (1970). The origins of feedback control. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • McCaffrey, J. B., & Machery, E. (2016). The reification objection to bottom-up cognitive ontology revision. Behavioral and Brain Sciences, 39, 16–18. https://doi.org/10.1017/S0140525X15001594.

    Article  Google Scholar 

  • McIntosh, A. R. (2000). Towards a network theory of cognition. Neural Networks, 13, 861–870.

    Article  Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nishitani, N., Schürmann, M., Amunts, K., & Hari, R. (2005). Broca’s region: From action to language. Physiology, 20, 60–69.

    Article  Google Scholar 

  • Poldrack, R. A., & Yarkoni, T. (2016). From brain maps to cognitive ontologies: Informatics and the search for mental structure. Annual Review of Psychology, 67, 587–612.

    Article  Google Scholar 

  • Pulvermüller, F. (2018). Neural reuse of action perception circuits for language, concepts and communication. Progress in Neurobiology, 160, 1–44.

    Article  Google Scholar 

  • Reid, D., Hussain, A. J., & Tawfik, H. (2014). Financial time series prediction using spiking neural networks. PLoS One, 9(8), e103656.

    Article  Google Scholar 

  • Sampaio, E., Maris, S., & Bach-y-Rita, P. (2001). Brain plasticity: ‘Visual’ acuity of blind persons via the tongue. Brain Research, 908(2), 204–207.

    Article  Google Scholar 

  • Scorzato, L. (2013). On the role of simplicity in science. Synthese, 190(14), 2867–2895.

    Article  Google Scholar 

  • Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting big data to good use in neuroscience. Nature Neuroscience, 17(11), 1440.

    Article  Google Scholar 

  • Seth, A. K., & Baars, B. J. (2005). Neural Darwinism and consciousness. Consciousness and Cognition, 14(1), 140–168.

    Article  Google Scholar 

  • Seth, A. K., & Edelman, G. M. (2007). Distinguishing causal interactions in neural populations. Neural Computation, 19(4), 910–933.

    Article  Google Scholar 

  • Sperber, D. (1994). The modularity of thought and the epidemiology of representations. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind (pp. 39–67). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Sporns, O. (2011). Networks of the brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Sporns, O., & Edelman, G. M. (1993). Solving Bernstein’s problem: A proposal for the development of coordinated movement by selection. Child Development, 64(4), 960–981.

    Article  Google Scholar 

  • Sporns, O., Tononi, G., & Edelman, G. M. (1991). Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proceedings of the National Academy of Sciences, 88(1), 129–133.

    Article  Google Scholar 

  • Sporns, O., Tononi, G., & Edelman, G. M. (2000). Connectivity and complexity: The relationship between neuroanatomy and brain dynamics. Neural Networks, 13(8–9), 909–922.

    Article  Google Scholar 

  • Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization of neuromagnetic responses during conscious perception. Journal of Neuroscience, 19(13), 5435–5448.

    Article  Google Scholar 

  • Tononi, G., & Edelman, G. M. (2000). Schizophrenia and the mechanisms of conscious integration. Brain Research Reviews, 31(2–3), 391–400.

    Article  Google Scholar 

  • Tononi, G., Sporns, O., & Edelman, G. M. (1992). Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system. Cerebral Cortex, 2(4), 310–335.

    Article  Google Scholar 

  • Tononi, G., Sporns, O., & Edelman, G. M. (1996). A complexity measure for selective matching of signals by the brain. Proceedings of the National Academy of Sciences, 93(8), 3422–3427.

    Article  Google Scholar 

  • Tononi, G., Edelman, G. M., & Sporns, O. (1998). Complexity and coherency: Integrating information in the brain. Trends in Cognitive Sciences, 2(12), 474–484.

    Article  Google Scholar 

  • Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. Barkow, L. Cosmides, & L. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19–136). New York: Oxford University Press.

    Google Scholar 

  • U.S. National Academy of Sciences. (2018). Definitions of evolutionary terms. The National Academies of Sciences, Engineering, Medicine: Evolution resources. Washington, DC. Retrieved July 19, 2018 from http://nationalacademies.org/evolution/Definitions.html

  • Uttal, W. R. (2005). Neural theories of mind: Why the mind-brain problem may never be solved. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Uttal, W. R. (2016). Macroneural theories in cognitive neuroscience. New York: Psychology Press.

    Book  Google Scholar 

  • von Bernhardi, R., Eugenín-von Bernhardi, L., & Eugenín, J. (2017). What is neural plasticity? In R. von Bernhardi, L. Eugenín-von Bernhardi, & J. Eugenín (Eds.), The plastic brain (pp. 1–15). Cham: Springer.

    Chapter  Google Scholar 

  • Woodward, J. F. (2011). Data and phenomena: A restatement and defense. Synthese, 182(1), 165–179.

    Article  Google Scholar 

  • Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., et al. (2018). A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell, 174(3), 730–743.

    Article  Google Scholar 

  • Ziegler, J. C., Montant, M., Briesemeister, B. B., Brink, T. T., Wicker, B., Ponz, A., et al. (2018). Do words stink? Neural reuse as a principle for understanding emotions in reading. Journal of Cognitive Neuroscience, 30(7), 1023–1032.

    Article  Google Scholar 

  • Zimmerman, A. W. (2008). Preface. In A. W. Zimmerman (Ed.), Autism: Current theories and evidence (pp. v–ix). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

Download references

Acknowledgements

The author thanks audiences at the Neural Mechanisms Online Webconference 2018 New Challenges in the Philosophy of Neuroscience and the meeting of the Southern Society for Philosophy and Psychology 2019 for helpful comments and questions. The author is very thankful for constructive feedback and suggestions from the editors and reviewers. This work is partially based on material from Favela (2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis H. Favela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favela, L.H. (2021). Fundamental Theories in Neuroscience: Why Neural Darwinism Encompasses Neural Reuse. In: Calzavarini, F., Viola, M. (eds) Neural Mechanisms. Studies in Brain and Mind, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-54092-0_7

Download citation

Publish with us

Policies and ethics