Skip to main content

Why Sustained Dietary Weight Loss Is So Difficult

The Weight Set-Point Explained

  • Living reference work entry
  • First Online:
Obesity, Bariatric and Metabolic Surgery
  • 33 Accesses

Abstract

Many dieters experience years of yo-yo weight fluctuation. Typically, the yo-yo effect is described as being able to lose weight on a diet but invariably, the lost weight is regained in the long-term. The weight set-point theory explains these dietary failures by hypothesizing that each individual has a weight setting which is determined by a combination of genetic, epigenetic, and environmental factors. When an individual’s weight diverges from the set-point, a biological homeostatic response occurs. Changes in appetite, satiety, and basal metabolic rate occur to defend the set-point weight. Powerful fluctuations occur in the expenditure of basal metabolic energy via the autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Obesity 2008.

    Google Scholar 

  2. Speakman JR, Levitsky DA, Allison DB, Bray MS, de Castro JM, Clegg DJ, et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech. 2011;4(6):733–45. https://doi.org/10.1242/dmm.008698.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dulloo AG, Girardier L. Adaptive changes in energy expenditure during refeeding following low-calorie intake: evidence for a specific metabolic component favoring fat storage. Am J Clin Nutr. 1990;52(3):415–20. https://doi.org/10.1093/ajcn/52.3.415.

    Article  CAS  PubMed  Google Scholar 

  4. Hill JO. Body weight regulation in obese and obese-reduced rats. Int J Obes. 1990;14(Suppl 1):31–47.

    PubMed  Google Scholar 

  5. Keys A, Brožek J, Henschel A, Mickelsen O, Taylor HL. The Biology of Human Starvation: Volume II. St. Paul, MN: University of Minnesota Press; 1950. 632 p. Available from: https://www.jstor.org/stable/10.5749/j.cttttqzj

    Book  Google Scholar 

  6. Sims EA, Horton ES. Endocrine and metabolic adaptation to obesity and starvation. Am J Clin Nutr. 1968;21(12):1455–70. https://doi.org/10.1093/ajcn/21.12.1455.

    Article  CAS  PubMed  Google Scholar 

  7. Pasquet P, Apfelbaum M. Recovery of initial body weight and composition after long-term massive overfeeding in men. Am J Clin Nutr. 1994;60(6):861–3. https://doi.org/10.1093/ajcn/60.6.861.

    Article  CAS  PubMed  Google Scholar 

  8. Prentice AM, Jebb SA, Goldberg GR, Coward WA, Murgatroyd PR, Poppitt SD, et al. Effects of weight cycling on body composition, Am J Clin Nutr. 1992;56(1 Suppl):209S–16S. https://doi.org/10.1093/ajcn/56.1.209S.

  9. Arone LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol. 1995;269(1 Pt 2):R222–5. https://doi.org/10.1152/ajpregu.1995.269.1.R222.

    Article  CAS  PubMed  Google Scholar 

  10. Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity (Silver Spring). 2016;24(8):1612–9. https://doi.org/10.1002/oby.21538.

    Article  Google Scholar 

  11. Harris AM, Jensen MD, Levine JA. Weekly changes in basal metabolic rate with eight weeks of overfeeding. Obesity (Silver Spring). 2006;14(4):690–5. https://doi.org/10.1038/oby.2006.78.

    Article  Google Scholar 

  12. Speakman JR, Krol E, Johnson MS. The functional significance of individual variation in basal metabolic rate. Physiol Biochem Zool. 2004;77(6):900–15. https://doi.org/10.1086/427059.

    Article  PubMed  Google Scholar 

  13. Giralt M, et al. Mitochondrial uncoupling and the regulation of glucose homeostasis. Diabetes Rev. 2017;13(4):386–94.

    CAS  Google Scholar 

  14. Pant M, Bal NC, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab. 2016;27(12):881–92.

    Article  CAS  Google Scholar 

  15. Bal NC, Sahoo SK, Maurya SK, Periasamy M. The role of sarcolipin in muscle non-shivering thermogenesis. Front Physiol. 2018;9:1217. https://doi.org/10.3389/fphys.2018.01217.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316(2):120–8. https://doi.org/10.1016/j.mce.2009.06.010.

    Article  CAS  PubMed  Google Scholar 

  17. Bailey R. Evaluating Calorie Intake for Population Statistical Estimates (ECLIPSE) [Internet]. 2018. Office for National Statistics, Data Science Campus; 2017 Apr 15 [cited 2018 FEB 15]. Available from: https://datasciencecampus.ons.gov.uk/evaluating-calorie-intake-for-population-statistical-estimates-eclipse/.

  18. Wardle J, et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87(2):398–404.

    Article  CAS  Google Scholar 

  19. Stein Z, Susser M. The Dutch famine, 1944–1945, and the reproductive process. I. Effects on six indices at birth. Pediatr Res. 1975;9(2):70–6. https://doi.org/10.1203/00006450-197502000-00003.

    Article  CAS  PubMed  Google Scholar 

  20. Hult M, Tornhammar P, Ueda P, Chima C, Edstedt Bonamy AK, Ozumba B, et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS One. 2010;5(10):e13582. https://doi.org/10.1371/journal.pone.0013582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guénard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl M-C. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad U S A. 2013;110(28):11439–44. https://doi.org/10.1073/pnas.1216959110.

    Article  Google Scholar 

  22. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128. https://doi.org/10.3390/nu8030128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kopp W. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221–36. https://doi.org/10.2147/DMSO.S216791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenkinson A. Why we eat (too much) – the new science of appetite. Published by Penguin; 2020.

    Google Scholar 

  25. Dankel SN, Degerud EM, Borkowski K, Fjære E, Midtbø LK, Haugen C, et al. Weight cycling promotes fat gain and altered clock gene expression in adipose tissue in C57BL/6J mice. Am J Physiol Endocrinol Metab. 2014;306(2):E210–24. https://doi.org/10.1152/ajpendo.00188.2013.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenbaum M, Leibel RL. 20 years of leptin: role of leptin in energy homeostasis in humans. J Endocrinol. 2014;223(1):T83–96. https://doi.org/10.1530/JOE-14-0358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelesidis T, et al. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Int Med. 2010;152(2):93–100.

    Article  Google Scholar 

  28. Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA. Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes Relat Metab Disord. 2004;28(10):1344–8. https://doi.org/10.1038/sj.ijo.0802753.

    Article  CAS  PubMed  Google Scholar 

  29. Wisse BE, Schwartz MW. Does hypothalamic inflammation cause obesity? Cell Metab. 2009;10(4):241–2. https://doi.org/10.1016/j.cmet.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  30. Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;(3):183–94. https://doi.org/10.1080/13813450802181047. Erratum in: Arch Physiol Biochem. 2009;115(2):117.

  31. Simopoulos AP. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev Int. 2004;20(1):77–90. https://doi.org/10.1081/FRI-120028831.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jenkinson, A. (2021). Why Sustained Dietary Weight Loss Is So Difficult. In: Agrawal, S. (eds) Obesity, Bariatric and Metabolic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-54064-7_112-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54064-7_112-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54064-7

  • Online ISBN: 978-3-030-54064-7

  • eBook Packages: MedicineMedicine

Publish with us

Policies and ethics