Skip to main content

Towards a Knowledge and Data-Driven Perspective in Medical Processes

  • Chapter
  • First Online:
Interactive Process Mining in Healthcare

Part of the book series: Health Informatics ((HI))

  • 952 Accesses

Abstract

Since the emergence of the Evidence-Based Medicine paradigm, the formalization of medical processes is one of the big aims for the standardization of healthcare. In the literature, there are different approaches to the definition of these processes. On one hand, knowledge-based Clinical Decision-Making technologies provide tools for formalizing specialized knowledge as described in clinical guidelines and textbooks, or stated by clinical experts. On the other hand, Clinical Process Management technologies, rely on a data-driven approach that can infer medical processes from data available in healthcare databases. This chapter aims to analyse these two prominent approaches for supporting clinical experts in the representation of medical processes, in search of a solution that takes advantage of both, and towards a new way of building formalized medical processes in a more efficient, precise, and usable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aho AV, Sethi R, Ullman JD. Compilers, principles, techniques. Addison Wesley. 1986;7(8):9.

    MATH  Google Scholar 

  2. Benson T. Care pathways. Technical report, NHS National Programme for Information Technology (NPfIT), 2005.

    Google Scholar 

  3. Conca T, Saint-Pierre C, Herskovic V, Sepúlveda M, Capurro D, Prieto F, Fernandez-Llatas C. Multidisciplinary collaboration in the treatment of patients with type 2 diabetes in primary care: analysis using process mining. J Med Internet Res. 2018;20(4).

    Google Scholar 

  4. Concaro S, Sacchi L, Cerra C, Fratino P, Bellazzi R. Mining healthcare data with temporal association rules: improvements and assessment for a practical use. In: Conference on artificial intelligence in medicine in Europe. Springer; 2009. p. 16–25.

    Google Scholar 

  5. de Clercq PA, Blom JA, Korsten HHM, Hasman A. Approaches for creating computer-interpretable guidelines that facilitate decision support. Artif Intell Med. 2004;31(1):1–27.

    Google Scholar 

  6. Du G, Jiang Z, Diao X, Yao Y. Knowledge extraction algorithm for variances handling of cp using integrated hybrid genetic double multi-group cooperative pso and dpso. J Med Syst. 2012;36(2):979–94.

    Google Scholar 

  7. Dumas M, La Rosa M, Mendling J, Reijers HA, et al. Fundamentals of business process management, vol. 1. Springer; 2013.

    Google Scholar 

  8. Eisenberg F. Chapter 4 – the role of quality measurement and reporting feedback as a driver for care improvement. In: Greenes RA, editor. Clinical decision support. The road to broad adoption. 2nd ed. Oxford: Academic; 2014. p. 145–64.

    Google Scholar 

  9. Fernandez-Llatas C, Lizondo A, Monton E, Benedi J-M, Traver V. Process mining methodology for health process tracking using real-time indoor location systems. Sensors. 2015;15(12):29821–40.

    Google Scholar 

  10. Fernandez-Llatas C, Pileggi SF, Traver V, Benedi JM. Timed parallel automaton: a mathematical tool for defining highly expressive formal workflows. In: 2011 Fifth Asia modelling symposium. IEEE; 2011. p. 56–61.

    Google Scholar 

  11. Fernandez-Llatas C, Valdivieso B, Traver V, Benedi JM. Using process mining for automatic support of clinical pathways design. In: Data mining in clinical medicine. Springer; 2015. p. 79–88.

    Google Scholar 

  12. Fernández-Llatas C, Meneu T, Traver V, Benedi J-M. Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int J Environ Res Public Health. 2013;10(11):5671–82.

    Google Scholar 

  13. Fox J, Black E, Chronakis I, Dunlop R, Patkar V, South M, Thomson R. From guidelines to careflows: modelling and supporting complex clinical processes. Stud Health Technol Inform. 2008;139:44–62.

    Google Scholar 

  14. Gatta R, Vallati M, Fernandez-Llatas C, Martinez-Millana A, Orini S, Sacchi L, Lenkowicz J, Marcos M, Munoz-Gama J, Cuendet M, et al. Clinical guidelines: a crossroad of many research areas. Challenges and opportunities in process mining for healthcare. In: International conference on business process management. Springer; 2019. p. 545–56.

    Google Scholar 

  15. Graham R, Mancher M, Miller Wolman D, Greenfield S, Steinberg E. Clinical practice guidelines we can trust. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  16. Hollingsworth D, Hampshire UK. Workflow management coalition: the workflow reference model. Workflow Management Coalition. Document Number TC00-1003. 1995;19:16.

    Google Scholar 

  17. Huang Z, Lu X, Duan H. On mining clinical pathway patterns from medical behaviors. Artif Intell Med. 2012;56(1):35–50.

    Google Scholar 

  18. Huang Z, Lu X, Duan H, Fan W. Summarizing clinical pathways from event logs. J Biomed Inform. 2013;46(1):111–27.

    Google Scholar 

  19. Kaiser K, Marcos M. Leveraging workflow control patterns in the domain of clinical practice guidelines. BMC Med Inform Decis Mak. 2016;16:20.

    Google Scholar 

  20. Latoszek-Berendsen A, Tange H, van den Herik HJ, Hasman A. From clinical practice guidelines to computer-interpretable guidelines. A literature overview. Methods Inf Med. 2010;49(6):550–70.

    Google Scholar 

  21. Lozano E, Marcos M, Martínez-Salvador B, Alonso A, Alonso JR. Experiences in the development of electronic care plans for the management of comorbidities. In: Riaño D, Teije A, Miksch S, Peleg M, editors. Knowledge representation for health-care. Data, processes and guidelines. Berlin/Heidelberg: Springer; 2010. p. 113–23.

    Google Scholar 

  22. Mahulea C, Mahulea L, García-Soriano J-M, Colom J-M. Petri nets with resources for modeling primary healthcare systems. In: 2014 18th International conference on system theory, control and computing (ICSTCC). IEEE; 2014. p. 639–44.

    Google Scholar 

  23. Marcos M, Campos C, Martínez-Salvador B. A practical exercise on re-engineering clinical guideline models using different representation languages. In: Marcos M, Juarez JM, Lenz R, Nalepa GJ, Nowaczyk S, Peleg M, Stefanowski J, Stiglic G, editors. Artificial intelligence in medicine: knowledge representation and transparent and explainable systems. Springer International Publishing; 2019.

    Google Scholar 

  24. Martin N, Martinez-Millana A, Valdivieso B, Fernández-Llatas C. Interactive data cleaning for process mining: a case study of an outpatient clinic’s appointment system. In: International conference on business process management. Springer; 2019. p. 532–44.

    Google Scholar 

  25. Martínez-Salvador B, Marcos M. Supporting the refinement of clinical process models to computer-interpretable guideline models. Bus Inform Syst Eng. 2016;58(5):355–66.

    Google Scholar 

  26. Mesner O, Davis A, Casman E, Simhan H, Shalizi C, Keenan-Devlin L, Borders A, Krishnamurti T. Using graph learning to understand adverse pregnancy outcomes and stress pathways. PloS One. 2019;14(9):e0223319.

    Google Scholar 

  27. Müller R, Rogge-Solti A. Bpmn for healthcare processes. In: Proceedings of the 3rd central-European workshop on services and their composition (ZEUS 2011), Karlsruhe, vol. 1, 2011.

    Google Scholar 

  28. Patkar V, Fox J. Clinical guidelines and care pathways: a case study applying proforma decision support technology to the breast cancer care pathway. Stud Health Technol Inform. 2008;139:233–42.

    Google Scholar 

  29. Peleg M. Computer-interpretable clinical guidelines: a methodological review. J Biomed Inform. 2013;46(4):744–63.

    Google Scholar 

  30. Peleg M, González-Ferrer A. Chapter 16 – guidelines and workflow models. In: Greenes RA, editor. Clinical decision support. The road to broad adoption. 2nd ed. Oxford: Academic; 2014. p. 435–64.

    Google Scholar 

  31. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD, Jones N, Kumar A, Silvia Miksch, Quaglini S, Seyfang A, Shortliffe EH, Stefanelli M. Comparing computer-interpretable guideline models: a case-study approach. J Am Med Inform Assoc. 2003;10(1):52–68.

    Google Scholar 

  32. Rebuge Á, Ferreira DR. Business process analysis in healthcare environments: a methodology based on process mining. Inf Syst. 2012;37(2):99–116.

    Google Scholar 

  33. Roser M, Ritchie H, Ortiz-Ospina E. World population growth. Our world in data, 2013.

    Google Scholar 

  34. Russell N, Van Der Aalst W, Ter Hofstede A. Workflow patterns: the definitive guide. MIT Press, 2016. https://ieeexplore.ieee.org/book/7453725.

  35. Sackett DL, Rosenberg WMC, Gray MJA, Haynes BR, Richardson SW. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312(7023):71–2.

    Google Scholar 

  36. Schrijvers G, van Hoorn A, Huiskes N. The care pathway: concepts and theories: an introduction. Int J Integr Care. 2012;12(Spec Ed Integrated Care Pathways):e192.

    Google Scholar 

  37. Sheth A. Internet of things to smart iot through semantic, cognitive, and perceptual computing. IEEE Intell Syst. 2016;31(2):108–12.

    Google Scholar 

  38. Van Der Aalst W. Process mining. Data science in action. Springer; 2016.

    Google Scholar 

  39. Yang W, Su Q. Process mining for clinical pathway: literature review and future directions. In: 2014 11th international conference on service systems and service management (ICSSSM). IEEE; 2014. p. 1–5.

    Google Scholar 

  40. Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang J-F, Hua L. Data mining in healthcare and biomedicine: a survey of the literature. J Med Syst. 2012;36(4):2431–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernandez-Llatas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-Llatas, C., Marcos, M. (2021). Towards a Knowledge and Data-Driven Perspective in Medical Processes. In: Fernandez-Llatas, C. (eds) Interactive Process Mining in Healthcare. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-53993-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53993-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53992-4

  • Online ISBN: 978-3-030-53993-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics