Skip to main content

Application of Bioavailability Measurements in Medical Geology

  • Chapter
  • First Online:
Practical Applications of Medical Geology

Abstract

This chapter gives an overview of how bioavailability measurements are used in medical geology. In broad terms, bioavailability is a measure of the amount of chemical in the geological material that has the ability to have a biological effect on humans or animals. Definitions of bioavailability and the closely related term bioaccessibility are given for three pathways by which chemicals can enter the body, namely: ingestion, inhalation, and dermal absorption. A literature search on the bioavailability of potentially harmful elements in soils gave 3631 of scientific papers. Text mining of the paper abstracts identified nine themes (X-ray Absorption, Solid/Intestinal and Gastric phases, Soil properties, Risk assessment, Sequential Extraction, Organic Matter, Microbiology, Particle Size, Lead and Phosphorus). A review of a selection of the papers under these themes is given. A summary and discussion of the current ingestion in vitro bioaccessibility tests that are in common use is provided and an example case study of how bioaccessibility measurements can be put to practical use is given on the bioaccessibility of arsenic in south west England. Finally, future research in bioavailability testing is discussed in which further work on the development of testing methodologies for inorganic contaminant bioavailability tests for the dermal and inhalation routes is required along with methods for all three exposure pathways for organic contaminants in soil. Speculation on the use of organ-on-a-chip developments as a replacement for in vitro bioavailability testing is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnieszka J, Barbara G (2012) Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands. J Hazard Mater 237-238:315–322

    Article  Google Scholar 

  • Arnot JA, Gobas FA (2006) A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev 14:257–297

    Article  Google Scholar 

  • Avci H, Güzel FD, Erol S, Akpek A (2018) Recent advances in organ-on-a-chip technologies and future challenges: a review. Turk J Chem 42:587–610

    Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    Article  Google Scholar 

  • Barsby A, Mckinley JM, Ofterdinger U, Young M, Cave MR, Wragg J (2012) Bioaccessibility of trace elements in soils in Northern Ireland. Sci Total Environ 433:398–417

    Article  Google Scholar 

  • Beak DG, Basta NT, Scheckel KG, Traina SJ (2008) Linking solid phase speciation of Pb sequestered to birnessite to oral Pb bioaccessibility: implications for soil remediation. Environ Sci Technol 42:779–785

    Article  Google Scholar 

  • Beriro DJ, Cave MR, Wragg J, Thomas R, Wills G, Evans F (2016) A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. J Hazard Mater 305:240–259

    Article  Google Scholar 

  • Bhattacharya SS, Chattopadhyay GN (2002) Increasing bioavailability of phosphorus from fly ash through vermicomposting. J Environ Qual 31:2116–2119

    Article  Google Scholar 

  • Bradham KD, Diamond GL, Nelson CM, Noerpel M, Scheckel KG, Elek B, Chaney RL, Ma Q, Thomas DJ (2018) Long-term in situ reduction in soil lead bioavailability measured in a mouse model. Environ Sci Technol 52:13908–13913

    Article  Google Scholar 

  • Cao P, Fujimori T, Juhasz A, Takaoka M (2019) Bioaccessibility of arsenic and lead in polluted soils using three in-vitro gastrointestinal simulation models. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  • Cave M (2008) The use of self modelling mixture resolution methods for the interpretation of geochemical data sets. British Geological Survey, Nottingham

    Google Scholar 

  • Cave MR, Milodowski AE, Friel EN (2004) Evaluation of a method for identification of host physico-chemical phases for trace metals and measurement of their solid-phase partitioning in soil samples by nitric acid extraction and chemometric mixture resolution. Geochem-Explor Env A 4:71–86

    Article  Google Scholar 

  • Cave MR, Wragg J, Denys S, Jondreville C, Feidt C (2011) Oral bioavailability. In: Swartjes F (ed) Dealing with contaminated sites: from theory towards practical application. Springer, New York, NY

    Google Scholar 

  • Cave MR, Vane CH, Kim A, Moss-Hayes VL, Wragg J, Richardson CL, Harrison H, Nathanail CP, Thomas R, Wills G (2015) Measurement and modelling of the ingestion bioaccessibility of polyaromatic hydrocarbons in soils. Environ Technol Innov 3:35–45

    Article  Google Scholar 

  • Collins CD, Craggs M, Garcia-Alcega S, Kademoglou K, Lowe S (2015) Towards a unified approach for the determination of the bioaccessibility of organic pollutants. Environ Int 78:24–31

    Article  Google Scholar 

  • Cox SF, Rollinson G, Mckinley JM (2017) Mineralogical characterisation to improve understanding of oral bioaccessibility of Cr and Ni in basaltic soils in Northern Ireland. J Geochem Explor 183:166–177

    Article  Google Scholar 

  • Davies G, Kustin K, Pasternack RF (1969) Kinetics and mechanism of the formation of nickel (II) and cobalt (II) complexes of glycine and di-, tri-, and tetraglycine in neutral to acid solution. Inorg Chem 8:1535–1537

    Article  Google Scholar 

  • Deng J, Qu Y, Liu T, Jing B, Zhang X, Chen Z, Luo Y, Zhao W, Lu Y, Lin B (2018) Recent organ-on-a-chip advances toward drug toxicity testing. Microphysiol Syst 2. https://doi.org/10.21037/mps.2018.09.02

  • Denys S, Caboche J, Feidt C, Hazebrouck B, Dor F, Dabin C, Floch-Barneaud A, Tack K (2009) Oral bioavailability and bioaccessibility in humans of metals and metalloids from polluted soils: definitions, measure protocols and international operational feedback. Environ Risq Sante 8:433–438

    Google Scholar 

  • Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C (2012) In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Technol 46:6252–6260

    Article  Google Scholar 

  • DIN (2000) Soil quality – absorption availability of organic and inorganic pollutants from contaminated soil material. Deutsches Institut fur Normung e. v., Berlin

    Google Scholar 

  • Drexler J, Brattin W (2007) An in vitro procedure for estimation of lead relative bioavailability: with validation. Hum Ecol Risk Assess 13:383–401

    Article  Google Scholar 

  • EPA (2017) Standard operating procedure for an in vitro bioaccessibility assay for lead and arsenic in soil. EPA, Washington, DC

    Google Scholar 

  • Fan J, Zhao G, Sun J, Hu Y, Wang T (2019) Effect of humic acid on se and Fe transformations in soil during waterlogged incubation. Sci Total Environ 684:476–485

    Article  Google Scholar 

  • Fernández-Caliani JC, Giráldez MI, Barba-Brioso C (2019) Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage. Chemosphere 237:124441

    Article  Google Scholar 

  • Fujimori T, Taniguchi M, Agusa T, Shiota K, Takaoka M, Yoshida A, Terazono A, Ballesteros FC Jr, Takigami H (2018) Effect of lead speciation on its oral bioaccessibility in surface dust and soil of electronic-wastes recycling sites. J Hazard Mater 341:365–372

    Article  Google Scholar 

  • Guney M, Chapuis RP, Zagury GJ (2016) Lung bioaccessibility of contaminants in particulate matter of geological origin. Environ Sci Pollut Res 23:24422–24434

    Article  Google Scholar 

  • Gusiatin ZM, Kulikowska D (2016) Behaviors of heavy metals (cd, cu, Ni, Pb and Zn) in soil amended with composts. Environ Technol 37:2337–2347

    Article  Google Scholar 

  • Harmsen J, Rulkens W, Eijsackers H (2005) Bioavailability: concept for understanding or tool for predicting? Land Contam Reclamat 13:161–171

    Google Scholar 

  • Helmke PA, Robarge WP, Korotev RL, Schomberg PJ (1979) Effects of soil-applied sewage sludge on concentrations of elements in earthworms. J Environ Qual 8:322–327

    Article  Google Scholar 

  • Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC Trends Anal Chem 25:876–886

    Article  Google Scholar 

  • ISO (2018) Assessment of human exposure from ingestion of soil and soil material – procedure for the estimation of the human bioaccessibility/bioavailability of metals in soil. Soil quality. ISO, Geneva

    Google Scholar 

  • Jiang SJ, Liu JG, Liu LL, Liu YH, Huang RL, Shu YH (2019) Effect of biochar on farmland soil and planting security of soybean in mining area. J Agro-Environ Sci 38:124–131

    Google Scholar 

  • Johnson C, Breward N (2004) G-BASE: geochemical baseline survey of the environment. British Geological Survey, Nottingham

    Google Scholar 

  • Jorge Mendoza C, Tatiana Garrido R, Cristian Quilodrán R, Matías Segovia C, José Parada A (2017) Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere 176:81–88

    Article  Google Scholar 

  • Juhasz AL, Weber J, Smith E (2011) Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. J Hazard Mater 186:1870–1879

    Article  Google Scholar 

  • Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal (loid) s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074

    Article  Google Scholar 

  • Kastury F, Placitu S, Boland J, Karna RR, Scheckel KG, Smith E, Juhasz AL (2019) Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environ Int 131:104967

    Article  Google Scholar 

  • Kelley ME, Brauning S, Schoof R, Ruby M (2002) Assessing oral bioavailability of metals in soil. Battelle Press, Columbus, OH

    Google Scholar 

  • Kielhorn J, Mangelsdorf I (2006) Dermal absorption. World Health Organization, Geneva

    Google Scholar 

  • Kumpiene J, Giagnoni L, Marschner B, Denys S, Mench M, Adriaensen K, Vangronsveld J, Puschenreiter M, Renella G (2017) Assessment of methods for determining bioavailability of trace elements in soils: a review. Pedosphere 27:389–406

    Article  Google Scholar 

  • Liu G, Wang J, Liu X, Liu X, Li X, Ren Y, Wang J, Dong L (2018) Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312:104–113

    Article  Google Scholar 

  • Lu Y, Gong Z, Zhang G, Burghardt W (2003) Concentrations and chemical speciations of cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115:101–111

    Article  Google Scholar 

  • Maity JP, Chen GS, Huang YH, Sun AC, Chen CY (2019) Ecofriendly heavy metal stabilization: microbial induced mineral precipitation (MIMP) and biomineralization for heavy metals within the contaminated soil by indigenous Bacteria. Geomicrobiol J 36:612

    Article  Google Scholar 

  • Marković J, Jović M, Smičiklas I, Šljivić-Ivanović M, Onjia A, Trivunac K, Popović A (2019) Cadmium retention and distribution in contaminated soil: effects and interactions of soil properties, contamination level, aging time and in situ immobilization agents. Ecotoxicol Environ Saf 174:305–314

    Article  Google Scholar 

  • Mccann CM, Peacock CL, Hudson-Edwards KA, Shrimpton T, Gray ND, Johnson KL (2018) In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J Hazard Mater 342:724–731

    Article  Google Scholar 

  • Moreira LJD, Da Silva EB, Fontes MPF, Liu X, Ma LQ (2018) Speciation, bioaccessibility and potential risk of chromium in Amazon forest soils. Environ Pollut 239:384–391

    Article  Google Scholar 

  • Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Van De Wiele T, Wragg J, Rompelberg CJM, Sips A, Van Wijnen JH (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36:3326–3334

    Article  Google Scholar 

  • Ounnas F, Jurjanz S, Dziurla MA, Guiavarc’h Y, Feidt C, Rychen G (2009) Relative bioavailability of soil-bound polycyclic aromatic hydrocarbons in goats. Chemosphere 77:115–122

    Article  Google Scholar 

  • Pelfrene A, Waterlot C, Mazzuca M, Nisse C, Bidar G, Francis D (2011) Assessing cd, Pb, Zn human bioaccessibility in smeltercontaminated agricultural topsoils (northern France). Environ Geochem Health 33:477–493

    Article  Google Scholar 

  • Peng S, Wang P, Peng L, Cheng T, Sun W, Shi Z (2018) Predicting heavy metal partition equilibrium in soils: roles of soil components and binding sites. Soil Sci Soc Am J 82:839–849

    Article  Google Scholar 

  • Qin J, Nworie OE, Lin C (2016) Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere 159:442–448

    Article  Google Scholar 

  • Rauret GF, López-Sánchez J, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  Google Scholar 

  • Roberts SM (2004) Incorporating information on bioavailability of soil-borne chemicals into human health risk assessments. Hum Ecol Risk Assess 10:631–635

    Article  Google Scholar 

  • Rodriguez RR, Basta NT, Casteel S, Pace L (1999) An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33:642–649

    Article  Google Scholar 

  • Rothbauer M, Rosser JM, Zirath H, Ertl P (2019) Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 55:81–86

    Article  Google Scholar 

  • Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  Google Scholar 

  • Scheckel KG, Ryan JA (2003) In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid. Sci Total Environ 302:253–265

    Article  Google Scholar 

  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurement. Environ Pollut 150:166–176

    Article  Google Scholar 

  • Stroud JL, Low A, Collins RN, Manefield M (2014) Metal(loid) bioaccessibility dictates microbial community composition in acid sulfate soil horizons and sulfidic drain sediments. Environ Sci Technol 48:8514–8521

    Article  Google Scholar 

  • Sun W, Xiao E, Xiao T, Krumins V, Wang Q, Häggblom M, Dong Y, Tang S, Hu M, Li B, Xia B, Liu W (2017) Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environ Sci Technol 51:9165–9175

    Article  Google Scholar 

  • Sutkowska K, Teper L, Vaněk A, Czech T (2018) Revealing the distribution and bioavailability of Zn, Pb, and cd in soil at an abandoned Zn processing site: the role of spectrometry techniques. Acta Phys Pol A 134:438–441

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Van De Wiele TR, Oomen AG, Wragg J, Cave M, Minekus M, Hack A, Cornelis C, Rompelberg CJM, De Zwart LL, Klinck B, Van Wijnen J, Verstraete W, Sips AJAM (2007) Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. J Environ Sci Health A 42:1203–1211

    Article  Google Scholar 

  • Versantvoort C, Rompelberg C (2004) Development and applicability of an in vitro digestion model in assessing the bioaccessibility of contaminants from food. Inspectorate of Health Inspection, Bilthoven

    Google Scholar 

  • Villegas CAM, Guney M, Zagury GJ (2019) Comparison of five artificial skin surface film liquids for assessing dermal bioaccessibility of metals in certified reference soils. Sci Total Environ 692:595–601

    Article  Google Scholar 

  • Violante A, Pigna M (2002) Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  Google Scholar 

  • Wang Y, Li L, Zou X, Shu R, Ding L, Yao K, Lv W, Liu G (2016) Impact of Humin on soil adsorption and remediation of cd(II), Pb(II), and cu(II). Soil Sediment Contam 25:700–715

    Article  Google Scholar 

  • Weis CP, Lavelle JM (1991) Characteristics to consider when choosing an animal model for the study of lead bioavailability. Chem Spec Bioavailab 3:113–119

    Article  Google Scholar 

  • Wilkinson M (2019) The potential of organ on chip technology for replacing animal testing. Animal experimentation. Working towards a paradigm change. Brill, Leiden

    Google Scholar 

  • Wragg J, Klinck B (2007) The bioaccessibility of lead from welsh mine waste using a respiratory uptake test. J Environ Sci Health A 42:1223–1231

    Article  Google Scholar 

  • Wragg J, Cave M, Nathanail P (2007) A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1303–1315

    Article  Google Scholar 

  • Wragg J, Cave MR, Basta N, Brandon E, Casteel S, Denys SEB, Gron C, Oomen A, Reimer K, Tack K, Van de Wiele T (2011) An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and Lead in soil. Sci Total Environ 409:4016–4030

    Google Scholar 

  • Wragg J, Cave M, Hamilton E, Lister TR (2018) The link between soil geochemistry in south-West England and human exposure to soil arsenic. Fortschr Mineral 8:570

    Google Scholar 

  • Yu YQ, Yang JY (2019) Oral bioaccessibility and health risk assessment of vanadium(IV) and vanadium(V) in a vanadium titanomagnetite mining region by a whole digestive system in-vitro method (WDSM). Chemosphere 215:294–304

    Article  Google Scholar 

  • Yu YQ, Yang JY (2020) Health risk assessment of fluorine in fertilizers from a fluorine contaminated region based on the oral bioaccessibility determined by biomimetic whole digestion-plasma in-vitro method (BWDPM). J Hazard Mater 383:121124

    Article  Google Scholar 

  • Zia MH, Codling EE, Scheckel KG, Chaney RL (2011) In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review. Environ Pollut 159:2320–2327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Cave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cave, M., Wragg, J. (2021). Application of Bioavailability Measurements in Medical Geology. In: Siegel, M., Selinus, O., Finkelman, R. (eds) Practical Applications of Medical Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-53893-4_8

Download citation

Publish with us

Policies and ethics