Skip to main content

Surveillance After Surgery for Pancreatic Cancer

  • Chapter
  • First Online:
Textbook of Pancreatic Cancer

Abstract

Disease recurrence remains the main cause of mortality in patients who underwent pancreatic cancer resection, with a median post-recurrence survival of only 3–9 months. Recent advancements in pancreatic cancer treatment have resulted in an increased interest in early detection and treatment of pancreatic cancer recurrence. However, the efficacy, timing and impact on quality of life of treatment of pancreatic cancer recurrence is yet unclear. As a result, the value of recurrence-focused surveillance for the early detection and treatment of pancreatic cancer recurrence remains controversial. Nevertheless, a surveillance strategy existing of 3–6 monthly serum CA 19-9 testing and CT imaging is increasingly implemented by pancreatic cancer clinicians worldwide. However, high-quality evidence to support this strategy is lacking, and the search for the optimal surveillance strategy is ongoing. Current research therefore not only focuses on expanding treatment options for pancreatic cancer recurrence, but also on improvement of detection methods and the introduction of promising diagnostic tests, such as liquid biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groot VP, Rezaee N, Wu W, et al. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2018;267:936–45.

    PubMed  Google Scholar 

  2. Groot VP, Gemenetzis G, Blair AB, et al. Implications of the pattern of disease recurrence on survival following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2018;25(8):2475–83.

    PubMed  PubMed Central  Google Scholar 

  3. Jones RP, Psarelli EE, Jackson R, et al. European Study Group for Pancreatic Cancer. Patterns of recurrence after resection of pancreatic ductal adenocarcinoma: a secondary analysis of the ESPAC-4 randomized adjuvant chemotherapy trial. JAMA Surg. 2019;154(11):1038–48. https://doi.org/10.1001/jamasurg.2019.3337.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sperti C, Moletta L, Merigliano S. Multimodality treatment of recurrent pancreatic cancer: mith or reality? World J Gastrointest Oncol. 2015;7(12):375e82.

    Google Scholar 

  5. Daamen LA, Groot VP, Intven MPW, et al. Postoperative surveillance of pancreatic cancer patients. Eur J Surg Oncol. 2019;45(10):1770–7.

    CAS  PubMed  Google Scholar 

  6. Groot VP, Gemenetzis G, Blair AB, et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. Ann Surg. 2019;269:1154–62.

    PubMed  Google Scholar 

  7. Wu W, He J, Cameron JL. The impact of postoperative complications on the administration of adjuvant therapy following pancreaticoduodenectomy for adenocarcinoma. Ann Surg Oncol. 2014;21(9):2873–81.

    PubMed  PubMed Central  Google Scholar 

  8. Mackay TM, Smits FJ, Roos D, et al. The risk of not receiving adjuvant chemotherapy after resection of pancreatic ductal adenocarcinoma: a nationwide analysis. HPB (Oxford). 2020;22(2):233–40. pii: S1365-182X(19)30610-0.

    Google Scholar 

  9. Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–24.

    CAS  PubMed  Google Scholar 

  10. Groot VP, Blair AB, Gemenetzis G, et al. Recurrence after neoadjuvant therapy and resection of borderline resectable and locally advanced pancreatic cancer. Eur J Surg Oncol. 2019;45(9):1674–83.

    PubMed  Google Scholar 

  11. Chawla A, Molina G, Pak LM, et al. Neoadjuvant therapy is associated with improved survival in borderline-resectable pancreatic cancer. Ann Surg Oncol. 2020;27(4):1191–20.

    PubMed  Google Scholar 

  12. Versteijne E, Vogel JA, Besselink MG, et al. Dutch Pancreatic Cancer Group. Meta-analysis comparing upfront surgery with neoadjuvant treatment in patients with resectable or borderline resectable pancreatic cancer. Br J Surg. 2018;105(8):946–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Groot VP, Daamen LA, Hagendoorn J, Borel Rinkes IHM, van Santvoort HC, Molenaar IQ. Use of imaging during symptomatic follow-up after resection of pancreatic ductal adenocarcinoma. J Surg Res. 2018;221:152–60.

    PubMed  Google Scholar 

  14. Groot VP, van Santvoort HC, Rombouts SJ, et al. Systematic review on the treatment of isolated local recurrence of pancreatic cancer after surgery; re-resection, chemoradiotherapy and SBRT. HPB (Oxford). 2017;19(2):83–92.

    Google Scholar 

  15. Conroy T, Hammel P, Hebbar M, et al. Canadian Cancer Trials Group and the Unicancer-GI–PRODIGE Group. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395–406.

    CAS  PubMed  Google Scholar 

  16. Ryan JF, Groot VP, Rosati LM, et al. Stereotactic body radiation therapy for isolated local recurrence after surgical resection of pancreatic ductal adenocarcinoma appears to be safe and effective. Ann Surg Oncol. 2018;25(1):280–9.

    PubMed  Google Scholar 

  17. Tjaden C, Michalski CW, Strobel O, et al. Clinical impact of structured follow-up after pancreatic surgery. Pancreas. 2016;45(6):895–9.

    PubMed  Google Scholar 

  18. Nordby T, Hugenschmidt H, Fagerland MW, Ikdahl T, Buanes T, Labori KJ. Follow-up after curative surgery for pancreatic ductal adenocarcinoma: asymptomatic recurrence is associated with improved survival. Eur J Surg Oncol. 2013;39:559–66.

    CAS  PubMed  Google Scholar 

  19. Tzeng CW, Fleming JB, Lee JE, et al. Yield of clinical and radiographic surveillance in patients with resected pancreatic adenocarcinoma following multimodal therapy. HPB (Oxford). 2012;14:365–72.

    Google Scholar 

  20. Elmi A, Murphy J, Hedgire S, et al. Post-Whipple imaging in patients with pancreatic ductal adenocarcinoma: association with overall survival: a multivariate analysis. Abdom Radiol. 2017;42:2101–7.

    Google Scholar 

  21. Li J, Li Z, Kan H, et al. CA19-9 elevation as an indication to start salvage treatment in surveillance after pancreatic cancer resection. Pancreatology. 2019;19:30024e9. pii: S1424-3903.

    Google Scholar 

  22. Daamen LA, Groot VP, Heerkens HD, Intven MPW, van Santvoort HC, Molenaar IQ. Systematic review on the role of serum tumor markers in the detection of recurrent pancreatic cancer. HPB (Oxford). 2018;20:297e304.

    Google Scholar 

  23. Osayi SN, Bloomston M, Schmidt CM, Ellison EC, Muscarella P. Biomarkers as predictors of recurrence following curative resection for pancreatic ductal adenocarcinoma: a review. Biomed Res Int. 2014;2014:468959.

    PubMed  PubMed Central  Google Scholar 

  24. Winter JM, Yeo CJ, Brody JR. Diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. J Surg Oncol. 2013;107:15–22.

    PubMed  Google Scholar 

  25. Koprowski H, Herlyn M, Steplewski Z, Sears HF. Specific antigen in serum of patients with colon carcinoma. Science. 1981;212:53–5.

    CAS  PubMed  Google Scholar 

  26. Kang CM, Kim JY, Choi GH, et al. The use of adjusted preoperative CA 19-9 to predict the recurrence of resectable pancreatic cancer. J Surg Res. 2007;140:31–5.

    CAS  PubMed  Google Scholar 

  27. Fry LC, Monkemuller K, Malfertheiner P. Molecular markers of pancreatic cancer: development and clinical relevance. Langenbecks Arch Surg. 2008;393:883–90.

    PubMed  Google Scholar 

  28. Distler M, Pilarsky E, Kersting S, Grutzmann R. Preoperative CEA and CA 19-9 are prognostic markers for survival after curative resection for ductal adenocarcinoma of the pancreas – a retrospective tumor marker prognostic study. Int J Surg. 2013;11:1067–72.

    PubMed  Google Scholar 

  29. Lamerz R. Role of tumour markers, cytogenetics. Ann Oncol. 1999;10(Suppl 4):145–9.

    PubMed  Google Scholar 

  30. Galli C, Basso D, Plebani M. CA 19-9: handle with care. Clin Chem Lab Med. 2013;51:1369–83.

    CAS  PubMed  Google Scholar 

  31. Hosokawa Y, Nagakawa Y, Sahara Y, Takishita C, Katsumata K, Tsuchida A. Serum SPan-1 is a significant risk factor for early recurrence of pancreatic cancer after curative resection. Dig Surg. 2017;34:125–32.

    CAS  PubMed  Google Scholar 

  32. Ducreux M, Cuhna AS, Caramella C, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v56–68.

    PubMed  Google Scholar 

  33. Nakagawa K, Akahori T, Nishiwada S, et al. Prognostic factors for actual long-term survival in the era of multidisciplinary treatment for pancreatic ductal adenocarcinoma. Langenbecks Arch Surg. 2018;403(6):693–700.

    PubMed  Google Scholar 

  34. Rieser CJ, Zenati M, Hamad A, et al. CA19-9 on postoperative surveillance in pancreatic ductal adenocarcinoma: predicting recurrence and changing prognosis over time. Ann Surg Oncol. 2018;25(12):3483–91.

    PubMed  Google Scholar 

  35. Tempero MA, Uchida E, Takasaki H, Burnett DA, Steplewski Z, Pour PM. Relationship of carbohydrate antigen 19-9 and Lewis antigens in pancreatic cancer. Cancer Res. 1987;47:5501–3.

    CAS  PubMed  Google Scholar 

  36. Nishio K, Kimura K, Amano R, et al. Preoperative predictors for early recurrence of resectable pancreatic cancer. World J Surg Oncol. 2017;15(1):16-016-1078-z.

    Google Scholar 

  37. Kiriyama S, Hayakawa T, Kondo T, et al. Usefulness of a new tumor marker, Span-1, for the diagnosis of pancreatic cancer. Cancer. 1990;65(7):1557–61.

    CAS  PubMed  Google Scholar 

  38. Chung YS, Ho JJ, Kim YS, et al. The detection of human pancreatic cancer-associated antigen in the serum of cancer patients. Cancer. 1987;60(7):1636–43.

    CAS  PubMed  Google Scholar 

  39. Kondo N, Murakami Y, Uemura K, et al. Comparison of the prognostic impact of pre- and post-operative CA19-9, SPan-1, and DUPAN-II levels in patients with pancreatic carcinoma. Pancreatology. 2017;17(1):95–102.

    CAS  PubMed  Google Scholar 

  40. Satake K, Takeuchi T. Comparison of CA19-9 with other tumor markers in the diagnosis of cancer of the pancreas. Pancreas. 1994;9(6):720–4.

    CAS  PubMed  Google Scholar 

  41. Kawa S, Oguchi H, Kobayashi T, et al. Elevated serum levels of Dupan-2 in pancreatic cancer patients negative for Lewis blood group phenotype. Br J Cancer. 1991;64(5):899–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Husain H, Velculescu VE. Cancer DNA in the circulation: the liquid biopsy. JAMA. 2017;318(13):1272–4.

    PubMed  PubMed Central  Google Scholar 

  43. Stroese AJ, Ullerich H, Koehler G, Raetzel V, Senninger N, Dhayat SA. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J Cancer Res Clin Oncol. 2018;144(12):2377–90.

    CAS  PubMed  Google Scholar 

  44. Court CM, Ankeny JS, Sho S, et al. Circulating tumor cells predict occult metastatic disease and prognosis in pancreatic cancer. Ann Surg Oncol. 2018;25(4):1000–8.

    PubMed  PubMed Central  Google Scholar 

  45. Groot VP, Mosier S, Javed AA, et al. Circulating tumor DNA as a clinical test in resected pancreatic cancer. Clin Cancer Res. 2019;25(16):4973–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gemenetzis G, Groot VP, Yu J, et al. Circulating tumor cells dynamics in pancreatic adenocarcinoma correlate with disease status: results of the prospective CLUSTER study. Ann Surg. 2018;268(3):408e20.

    Google Scholar 

  47. Creemers A, Krausz S, Strijker M, et al. Clinical value of ctDNA in upper-GI cancers: a systematic review and meta-analysis. Biochim Biophys Acta Rev Cancer. 2017;1868(2):394e403.

    Google Scholar 

  48. Watanabe F, Suzuki K, Tamaki S, et al. Longitudinal monitoring of KRAS-mutated circulating tumor DNA enables the prediction of prognosis and therapeutic responses in patients with pancreatic cancer. PLoS One. 2019;14(12):e0227366.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 2018;36(16):1631e41.

    Google Scholar 

  50. Tempero MA, Malafa MP, Chiorean EG, et al. Pancreatic Adenocarcinoma, Version 1.2019. J Natl Compr Cancer Netw. 2019;17(3):202–10.

    Google Scholar 

  51. Balaj C, Ayav A, Oliver A, et al. CT imaging of early local recurrence of pancreatic adenocarcinoma following pancreaticoduodenectomy. Abdom Radiol. 2016;41:273–82.

    Google Scholar 

  52. Bipat S, Phoa SS, van Delden OM, et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J Comput Assist Tomogr. 2005;29:438–45.

    PubMed  Google Scholar 

  53. Daamen LA, Groot VP, Goense L, et al. The diagnostic performance of CT versus FDG PET-CT for the detection of recurrent pancreatic cancer: a systematic review and meta-analysis. Eur J Radiol. 2018;106:128–36.

    PubMed  Google Scholar 

  54. Kitajima K, Murakami K, Yamasaki E, et al. Performance of integrated FDG-PET/contrast-enhanced CT in the diagnosis of recurrent pancreatic cancer: comparison with integrated FDG-PET/non-contrast-enhanced CT and enhanced CT. Mol Imaging Biol. 2009;12(4):452–9.

    PubMed  Google Scholar 

  55. Jung W, Jang JY, Kang MJ, et al. The clinical usefulness of 18 ffluorodeoxyglucose positron emission tomography/computed tomography (PET-CT) in followup of curatively resected pancreatic cancer patients. HPB. 2015;17:165–6.

    Google Scholar 

  56. Rayamajhi S, Balachandran A, Katz M, Reddy A, Rohren E, Bhosale P. Utility of (18) F-FDG PET/CT and CECT in conjunction with serum CA 19-9 for detecting recurrent pancreatic adenocarcinoma. Abdom Radiol (NY). 2018;43(2):505–13.

    Google Scholar 

  57. Jadvar H, Fischman AJ. Evaluation of pancreatic carcinoma with FDG PET. Abdom Imaging. 2001;26:254–9.

    CAS  PubMed  Google Scholar 

  58. Peti S, Fardanesh R, Golan S, et al. The combination of FDG PET/CT and contrast enhanced CT in the evaluation of recurrent pancreatic carcinoma and cholangiocarcinoma. Curr Med Imaging Rev. 2014;10:53–61.

    Google Scholar 

  59. Mortelé KJ, Lemmerling M, De Hemptinne B, De Vos M, De Bock G, Kunnen M. Postoperative findings following the Whipple procedure: determination of prevalence and morphologic abdominal CT features. Eur Radiol. 2000;10:123–8.

    PubMed  Google Scholar 

  60. Sperti C, Pasquali C, Bissoli S, Chierichetti F, Liessi G, Pedrazzoli S. 18-FDG PET performs much better than CT in detecting tumor relapse after potentially curative pancreatic cancer resection and it may influence long-term outcomes. Pancreatology. 2009;9:444.

    Google Scholar 

  61. Chang KJ, Nguyen P, Erickson RA, Durbin TE, Katz KD. The clinical utility of endoscopic ultrasound-guided fine-needle aspiration in the diagnosis and staging of pancreatic carcinoma. Gastrointest Endosc. 1997;45(5):387–93.

    CAS  PubMed  Google Scholar 

  62. Matsumoto K, Kato H, Horiguchi S, et al. Utility of endoscopic ultrasound-guided fine needle aspiration in the diagnosis of local recurrence of pancreaticobiliary cancer after surgical resection. Gut Liver. 2019; https://doi.org/10.5009/gnl19200.

  63. DeWitt J, Sherman S, Al-Haddad M, McHenry L, Cote GA, Leblanc JK. EUS-guided FNA of local recurrence of pancreatic cancer after surgical resection. Gastrointest Endosc. 2010;72(5):1076–80.

    PubMed  Google Scholar 

  64. Bastiaenen VP, Hovdenak Jakobsen I, Labianca R, et al. Research Committee and the Guidelines Committee of the European Society of Coloproctology (ESCP). Consensus and controversies regarding follow-up after treatment with curative intent of nonmetastatic colorectal cancer: a synopsis of guidelines used in countries represented in the European Society of Coloproctology. Color Dis. 2019;21(4):392–416.

    CAS  Google Scholar 

  65. Rustin GJ, van der Burg ME, Griffin CL, et al. MRC OV05; EORTC 55955 investigators. Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet. 2010;376(9747):1155–63.

    PubMed  Google Scholar 

  66. Witkowski ER, Smith JK, Ragulin-Coyne E, Ng SC, Shah SA, Tseng JF. Is it worth looking? Abdominal imaging after pancreatic cancer resection: a national study. J Gastrointest Surg. 2012;16:121–8.

    PubMed  Google Scholar 

  67. Tzeng CW, Abbott DE, Cantor SB, et al. Frequency and intensity of postoperative surveillance after curative treatment of pancreatic cancer: a cost-effectiveness analysis. Ann Surg Oncol. 2013;20:2197–203.

    PubMed  Google Scholar 

  68. Deobald RG, Cheng ES, Ko YJ, Wright FC, Karanicolas PJ. A qualitative study of patient and clinician attitudes regarding surveillance after a resection of pancreatic and peri-ampullary cancer. HPB (Oxford). 2015;17:409–15.

    Google Scholar 

  69. Deimling GT, Bowman KF, Sterns S, Wagner LJ, Kahana B. Cancer-related health worries and psychological distress among older adult, long-term cancer survivors. Psychooncology. 2006;15:306–20.

    PubMed  Google Scholar 

  70. Petzel MQ, Parker NH, Valentine AD, et al. Fear of cancer recurrence after curative pancreatectomy: a cross-sectional study in survivors of pancreatic and periampullary tumors. Ann Surg Oncol. 2012;19:4078–84.

    PubMed  Google Scholar 

  71. Elberg Dengsø K, Tjørnhøj-Thomsen T, Oksbjerg Dalton S, et al. It’s all about the CA-19-9. A longitudinal qualitative study of patients’ experiences and perspectives on follow-up after curative surgery for cancer in the pancreas, duodenum or bile-duct. Acta Oncol. 2019;58(5):642–9.

    PubMed  Google Scholar 

  72. Yamaguchi K, Okusaka T, Shimizu K, et al. EBM-based clinical guidelines for pancreatic cancer (2013) issued by the Japan pancreas society: a synopsis. Jpn J Clin Oncol. 2014;44:883e8.

    Google Scholar 

  73. Takaori K, Bassi C, Biankin A, et al. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology. 2016;16:14–27.

    PubMed  Google Scholar 

  74. Khorana AA, Mangu PB, Berlin J, et al. Potentially curable pancreatic cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(20):2324–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois A. Daamen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daamen, L.A., Groot, V.P., Molenaar, I.Q. (2021). Surveillance After Surgery for Pancreatic Cancer. In: Søreide, K., Stättner, S. (eds) Textbook of Pancreatic Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-53786-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53786-9_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53785-2

  • Online ISBN: 978-3-030-53786-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics