Skip to main content

High Strain Rate Tension Experiments Features for Visco-Plastic Materials

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

The paper considers distinguishing features of the experiment on visco-plastic materials subjected to high strain rate tension, namely non-uniformity of stress–strain state in the working part of a specimen due to the existence of fixing parts and plastic strain localization. The modification of the Kolsky method (or Split Hopkinson Pressure Bar method) is used as experimental technique. The main experimental setup configurations for testing specimens under high strain rate tension are reviewed. We present mathematical models used for assessment of stress components distributed in a neck. The numerical modeling of high rate tension of a visco-plastic axisymmetric specimen is performed, allowing the accuracy of above models to be estimated. The experimental–numerical procedure used to construct a true stress–strain curve on the basis of high rate tensile experiment is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibert, J. J., Seppecher, P., & dell’Isola, F. (2003). Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1).

    Google Scholar 

  • Alves, M., & Jones, N. (1999). Influence of hydrostatic stress on failure of axisymmetric notched specimens. Journal of the Mechanics and Physics of Solids, 47, 643–667.

    Article  ADS  MATH  Google Scholar 

  • Aronofsky, J. (1951). Evaluation of stress distribution in the symmetrical neck of flat tensile bars. Journal of Applied Mechanics, 75–84.

    Google Scholar 

  • Arthington, M. R., Siviour, C. R., & Petrinic, N. (2012). Improved materials characterisation through the application of geometry reconstruction to quasi-static and highstrain-rate tension tests. International Journal of Impact Engineering, 46, 86–96.

    Article  Google Scholar 

  • Auffray, N., dell’Isola, F., Eremeyev, V., Madeo A., & Rossi G. (2013). Analytical continuum mechanics Ă  la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Bacon, C., & Lataillade J.-L. (2001). Development of the Kolsky-Hopkinson techniques and applications for non-conventional testing. In W. K.Nowacki & J. R.Klepaczko (Eds.), New experimental methods in material dynamics and impact. Trends in Mechanics of Materials (pp. 1–58), Warsaw.

    Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Bazhenov, V. G., Lomunov, V. K., Osetrov S. L., & Pavlenkova, E. V. (2013). Experimental and computational method of studying large elastoplastic deformations of cylindrical shells in tension to rupture and constructing strain diagrams for an inhomogeneous stress-strain state. Journal of Applied Mechanics and Technical Physics, 54(1), 100–107

    Google Scholar 

  • Bragov, A., Konstantinov, A., Kruszka, L., Lomunov, A., & Filippov, A. (2018). Dynamic properties of stainless steel under direct tension loading using a simple gas gun. EPJ Web of Conferences, 183(2035). https://doi.org/10.1051/epjconf/201818302035.

  • Bragov, A. M., Lomunov, A. K., Lamzin, D. A., et al. (2019). Continuum Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-019-00776-0

    Article  Google Scholar 

  • Bridgman, P. W. (1955). Studies in large plastic Flow and fracture (Russian translation). Moscow: Izd. Inostr. Lit.

    Google Scholar 

  • Caverzan, A., Cadoni, E., & di Prisco, M. (2012). Tensile behaviour of high performance fibre-reinforced cementitious composites at high strain rates. International Journal of Impact Engineering, 45, 28–38.

    Google Scholar 

  • Chen, W., Lu, F., & Cheng, M. (2002). Tension and compression tests of two polymers under quasistatic and dynamic loading. Polymer Testing, 21(2), 113–121.

    ADS  Google Scholar 

  • Davidenkov, N. N., & Spiridonova, N. I. (1946). Analysis of the state of stress in the neck of a tensile test specimen. Proceedings of ASTM, 46, 1147–1158.

    Google Scholar 

  • Davies, R. M. (1948). A critical study of the Hopkinson pressure bar. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240, 375–457.

    Google Scholar 

  • Del Vescovo, D., & Giorgio, I. (2014). Dynamic problems for metamaterials: Review of existing models and ideas for further research. International Journal of Engineering Science, 80, 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  • dell’Isola, F., Andreaus, U., & Placidi, L. (2015). At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 20(8).

    Google Scholar 

  • dell’Isola, F., Della Corte, A., & Giorgio, I. (2016a). Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids.

    Google Scholar 

  • dell’Isola, F., Della Corte, A., Greco, L., & Luongo, A. (2016b). Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. International Journal of Solids and Structures.

    Google Scholar 

  • dell’Isola, F., Cuomo, M., Greco, L., & Della Corte, A. (2017). Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. Journal of Engineering Mathematics.

    Google Scholar 

  • dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. (2016c). Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of The Royal Society A, 472(2185).

    Google Scholar 

  • dell’Isola, F., Seppecher, P., & Alibert, J. J. (2019). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Madeo A. (2012). How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift fĂĽr angewandte Mathematik und Physik, 63(6).

    Google Scholar 

  • Dietrich, L., Miastkowski, J., & Szczepinski, W. (1970). Limiting capacity of the construction elements. Warsaw: PWN. ((in Polish)).

    Google Scholar 

  • Eskandari, H., & Nemes J. A. (2000). Dynamic testing of composite laminates with a tensile split Hopkinson bar. Journal of Composite Materials.

    Google Scholar 

  • Field J. E., Walley, S. M., Bourne, N. K., & Huntley, J. M. (1994). Experimental methods at high strain rate. Journal de Physique, IV(C3), 3–22.

    Google Scholar 

  • Gama, B. A., Lopatnikov, S. L., & Gillespie, J. W., Jr. (2004). Hopkinson bar experimental technique: A critical review. Applied Mechanics Reviews. https://doi.org/10.1115/1.1704626

    Article  Google Scholar 

  • Ganzenmuller, G. C., Blaum, E., Mohrmann, D., Langhof, T., Plappert, D., Ledford, N., et al. (2017). A simplified design for a Split-Hopkinson Tension Bar with long pulse duration. Procedia Engineering, 197, 109–118.

    Article  Google Scholar 

  • Gerlach, R., Kettenbeil, C., & Petrinic, N. (2012). A new split Hopkinson tensile bar design. International Journal of Impact Engineering, 50, 63–67.

    Article  Google Scholar 

  • Gerlach, R., Sathianathan, S. K., Siviour, C., & Petrinic, N. (2011). A novel method for pulse shaping of Split Hopkinson tensile bar signals. International Journal of Impact Engineering, 38, 976–980.

    Google Scholar 

  • Gilat, A., Schmid, T. E., & Walker, A. L. (2009). Full field strain measurement in compression and tensile split Hopkinson bar experiments. Experimental Mechanics, 49, 291–302.

    Google Scholar 

  • Giorgio, I. (2016). Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift fĂĽr angewandte Mathematik und Physik.

    Google Scholar 

  • Gromada, M., Mishuris, G., & Ă–chsner A. (2011).Correction formulae for the stress distribution in round tensile specimens at neck presence. In SpringerBriefs in applied sciences and technology computational mechanics (pp. 1–89). https://doi.org/10.1007/978-3-642-22134-7.

  • Guzman, O., Frew, D. J., & Chen, W. (2011). A Kolsky tension bar technique using a hollow incident tube. Measurement Science & Technology, 22(4).

    Google Scholar 

  • Harding, J., et al. (1992). Mechanical behaviour of composite materials under impact loading. In M. A. Meyers (Ed.), Shock-wave and high strain rate phenomena in materials (p. 21). New York: Dekker.

    Google Scholar 

  • Hasenpouth, D. (2010). Tensile high strain rate behavior of AZ31B magnesium alloy sheet. Master’s Thesis: University of Waterloo.

    Google Scholar 

  • Hauser, F. E. (1966). Techniques for measuring stress-strain relations at high strain rates. Experimental Mechanics, 6(8), 395–402.

    Google Scholar 

  • Huang, S., Chen, R., & Xia, K. W. (2010). Quantification of dynamic tensile parameters of rocks using a modified Kolsky tension bar apparatus . Journal of Rock Mechanics and Geotechnical Engineering, 2(2), 162–168.

    Article  Google Scholar 

  • Huh, H., Kang, W. J., & Han, S. S. (2002). A tension split Hopkinson bar for investigating the dynamic behavior of sheet metals. Experimental Mechanics, 42(1), 8–17.

    Article  Google Scholar 

  • Jiang, B., & Zhang, R. (2006). Tensile properties in the through-thickness direction for a carbon fiber woven reinforced composite at impact loading rate. Journal de Physique IVFrance, 134, 1071–1075.

    ADS  Google Scholar 

  • Kajberg, J., & Wikman, B. (2007). Viscoplastic parameter estimation by high strain-rate experiments and inverse modelling—speckle measurements and high-speed photography. International Journal of Solids and Structures, 44, 145–164.

    Google Scholar 

  • Kolsky, H. (1949). An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society. Section B, 62, 676–700.

    Article  ADS  Google Scholar 

  • La Rosa, G., Mirone, G., & Risitano, A. (2003). Post-necking elastoplastic characterization: Degree of approximation in the Bridgman method and properties of the flow-stress/true-stress ratio. Metallurgical and Materials Transactions A, 34A(3), 615–624.

    Article  ADS  Google Scholar 

  • Lindholm, U. S., & Yeakley, L. M. (1968). High strain-rate testing: Tension and compression. Experimental Mechanics, 8(1), 1–9.

    Article  Google Scholar 

  • Ling, Y. (1996). Uniaxial true stress–strain after necking. AMP Journal of Technology, 5, 37–48.

    Google Scholar 

  • Malinin, N. N., & Rzysko, J. (1981). Mechanics of materials. Warsaw: PWN. ((in Polish)).

    Google Scholar 

  • Markov, I. P. (2018). Characterizing pantographic sheets by means of computational experiments. Problems of Strength and Plasticity, 80(3).

    Google Scholar 

  • Mirone, G. (2013). The dynamic effect of necking in Hopkinson bar tension tests. Mechanics of Materials, 58, 84–96.

    Article  Google Scholar 

  • Mirone, G. (2004). A new model for the elastoplastic characterization and the stress–strain determination on the necking section of a tensile specimen. International Journal of Solids and Structures, 41, 3545–3564.

    Google Scholar 

  • Mirone, G. (2007). Role of stress triaxiality in elastoplastic characterization and ductile failure prediction. Engineering Fracture Mechanics, 74(8), 1203–1221.

    Google Scholar 

  • Mirone, G., & Corallo, D. (2010). A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening. International Journal of Plasticity, 26, 348–371.

    MATH  Google Scholar 

  • Mirone, G., Corallo, D., & Barbagallo, R. (2016). Interaction of strain rate and necking on the stress-strain response of uniaxial tension tests by Hopkinson bar. Procedia Structural Integrity, 2, 974–985.

    Google Scholar 

  • Nguyen, K., Kim, H. C., Shin, H., Yoo, Y. H., & Kim, J.-B. (2017). Numerical investigation into the stress wave transmitting characteristics of threads in the split Hopkinson tensile bar test. International Journal of Impact Engineering, 109, 253–263.

    Google Scholar 

  • Nicholas, T. (1981). Tensile testing of materials at high rates of strain. Experimental Materials, 21(5), 177–185.

    Google Scholar 

  • Noble, J. P., Goldthorpe, B. D., Church, P., & Harding, J. (1997). The use of the Hopkinson bar to validate constitutive relations at high rates of strain. Journal of the Mechanics and Physics of Solids, 47, 1187–1206.

    ADS  MATH  Google Scholar 

  • Noble, J. P., & Harding, J. (1994). Temperature-measurement in the tensile Hopkinson bar test. Measurement Science & Technology, 5(9), 1163–1171.

    ADS  Google Scholar 

  • Placidi, L., & Andreaus, U., & Giorgio I. (2017). Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics.

    Google Scholar 

  • Placidi, L., Barchiesi, E., Turco, E., Rizzi, N. L. (2016). A review on 2D models for the description of pantographic fabrics. Zeitschrift fĂĽr angewandte Mathematik und Physik, 67.

    Google Scholar 

  • Rahali, Y., Giorgio, I., Ganghoffer, J.-F., & dell’Isola, F. (2015). Homogenization Ă  la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97.

    Google Scholar 

  • Sasso, M., Newaz, G., & Amodio, D. (2008). Material characterization at high strain rate by Hopkinson bar tests and finite element optimization. Materials Science and Engineering A, 487, 289–300.

    Article  Google Scholar 

  • Sciarra, G., dell’Isola, F., & Coussy, O. (2007). Second gradient poromechanics. International Journal of Solids and Structures, 44(20).

    Google Scholar 

  • Smerd, R., Winkler, S., Salisbury, C., Worswick, M., Lloyd, D., & Finn, M. (2005). High strain rate tensile testing of automotive aluminum alloy sheet. International Journal of Impact Engineering, 32(1–4), 541–560.

    Article  Google Scholar 

  • Taniguchi, N., Nishiwaki, T., & Kawada, H. (2007). Tensile strength of unidirectional CFRP laminate under high strain rate. Advanced Composite Materials, 16(2), 167–180.

    Article  Google Scholar 

  • Turco, E., Dell’Iola, F., Cazzani, A., & Rizzi, N. L. (2016). Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift fĂĽr angewandte Mathematik und Physik.

    Google Scholar 

  • Yokoyama, T. (2003). Impact tensile stressestrain characteristics of wrought magnesium alloys. Strain, 39(4), 167–175.

    Article  Google Scholar 

  • Young, K. (2015). Development of a tensile split Hopkinson pressure bar testing facility. PhD, University of Windsor, Ontario, Canada.

    Google Scholar 

  • Volkov, I. A., Igumnov, L. A., Litvinchuk, SYu., & Vorobcov, I. V. (2018). Modeling dynamic deformation and failure of thin-walled structures under explosive loading. EPJ Web of Conferences, 183, 03016. https://doi.org/10.1051/epjconf/201818303016

    Article  Google Scholar 

  • Zhang, K. S., & Li, Z. H. (1994). Numerical analysis of the stress-strain curve and fracture initiation for ductile material. Engineering Fracture Mechanics, 49, 235–241.

    Article  ADS  Google Scholar 

  • Zhang, Z. L., Hauge, M., Odegard, J., & Thaulow, C. (1999). Determining material true stress–strain curve from tensile specimens with rectangular cross section. International Journal of Solids and Structures, 36, 2386–2405.

    MATH  Google Scholar 

Download references

Acknowledgements

The experimental study was supported by the Grant of the President of the Russian Federation for young scientists (MD-1221.2019.8). The theoretical investigations were supported by the grant of the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii M. Bragov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basalin, A.V., Bragov, A.M., Konstantinov, A.Y., Lomunov, A.K., Zhidkov, A.V. (2021). High Strain Rate Tension Experiments Features for Visco-Plastic Materials. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_13

Download citation

Publish with us

Policies and ethics