Skip to main content

Hard Provability Logics

  • Chapter
  • First Online:
Mathematics, Logic, and their Philosophies

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 49))

  • 360 Accesses

Abstract

Let \(\mathsf{PL}(T,T')\) and \(\mathsf{PL}_{_{\Sigma _1}}(T,T')\) respectively indicate the provability logic and \(\Sigma _1\)-provability logic  of \(T\) relative in \(T'\). In this paper we characterise the following relative provability logics: \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA},\mathbb {N})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA},\mathsf{PA})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA}^*,\mathbb {N})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA}^*,\mathsf{PA})\), \(\mathsf{PL}(\mathsf{PA},\mathsf{HA})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA},\mathsf{HA})\), \(\mathsf{PL}(\mathsf{PA}^*,\mathsf{HA})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA}^*,\mathsf{HA})\), \(\mathsf{PL}(\mathsf{PA}^*,\mathsf{PA})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA}^*,\mathsf{PA})\), \(\mathsf{PL}(\mathsf{PA}^*,\mathbb {N})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA}^*,\mathbb {N})\) (see Table 9.3). It turns out that all of these provability logics are decidable. The notion of reduction for provability logics, first informally considered in (Ardeshir and Mojtahedi 2015). In this paper, we formalize a generalization of this notion (Definition 9.4.1) and provide several reductions of provability logics (see Diagram 9.5). The interesting fact is that \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA},\mathbb {N})\) is the hardest provability logic: the arithmetical completenesses of all provability logics listed above, as well as well-known provability logics like \(\mathsf{PL}(\mathsf{PA},\mathsf{PA})\), \(\mathsf{PL}(\mathsf{PA},\mathbb {N})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA},\mathsf{PA})\), \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{PA},\mathbb {N})\) and \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA},\mathsf{HA})\), are all propositionally reducible to the arithmetical completeness of \(\mathsf{PL}_{_{\Sigma _1}}(\mathsf{HA},\mathbb {N})\).

http://mmojtahedi.ir/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardeshir, M., & Mojtahedi, M. (2014). The de Jongh property for basic arithmetic. Archive for Mathematical Logic, 53(7–8), 881–895.

    Article  Google Scholar 

  • Ardeshir, M., & Mojtahedi, M. (2015). Reduction of provability logics to \(\Sigma _1\)-provability logics. Logic Journal of IGPL, 23(5), 842–847.

    Article  Google Scholar 

  • Ardeshir, M., & Mojtahedi, M. (2018). The \(\Sigma _1\)-provability logic of \({ HA}\). Annals of Pure and Applied Logic, 169(10), 997–1043.

    Article  Google Scholar 

  • Ardeshir, M., & Mojtahedi, M. (2019). The \(\Sigma _1\)-Provability Logic of \({ HA}^*\). Jornal of Symbolic Logic, 84(3), 118–1135.

    Google Scholar 

  • Artemov, S., & Beklemishev, L. (2004). Provability logic. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 13, pp. 189–360). Berlin: Springer.

    Google Scholar 

  • Beklemishev, L., & Visser, A. (2006). Problems in the logic of provability. In Mathematical problems from applied logic. I (Vol. 4, pp. 77–136) nternational Mathematical Series (New York). New York: Springer.

    Google Scholar 

  • Berarducci, A. (1990). The interpretability logic of peano arithmetic. Journal of Symbolic Logic, 55(3), 1059–1089.

    Article  Google Scholar 

  • de Jongh, D. (1970). The maximality of the intuitionistic predicate calculus with respect to heyting’s arithmetic. Journal of Symbolic Logic, 36, 606.

    Google Scholar 

  • de Jongh, D., Verbrugge, R., & Visser, A. (2011). Intermediate logics and the de Jongh property. Archive for Mathematical Logic, 50, 197–213.

    Article  Google Scholar 

  • Feferman, S. (1960). Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae, 49(1), 35–92.

    Article  Google Scholar 

  • Friedman, H. (1975). The disjunction property implies the numerical existence property. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2877–2878.

    Article  Google Scholar 

  • Gödel, K. (1931). Über formal unentscheidbare Sätze der principia mathematica und verwandter systeme I. Monatshefte Mathematical Physics, 38(1), 173–198.

    Article  Google Scholar 

  • Gödel, K. (1933). Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse eines mathematischen Kolloquiums 4, 39–40. English translation. In S. Feferman et al. (Eds.), Kurt Gödel Collected Works (Vol. 1, pp. 301–303). Oxford University Press, 1995.

    Google Scholar 

  • Hájek, P., & Pudlák, P. (1993). Metamathematics of first-order arithmetic. Berlin: Springer.

    Google Scholar 

  • Iemhoff, R. (2001). Provability logic and admissible rules. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Leivant, D. (1975). Absoluteness in intuitionistic logic. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Löb, M. (1955). Solution of a problem of Leon Henkin. Journal of Symbolic Logic, 20(2), 115–118.

    Article  Google Scholar 

  • Myhill, J. (1973). A note on indicator-functions. Proceedings of the AMS, 39, 181–183.

    Article  Google Scholar 

  • Smoryński, C. (1985). Self-reference and modal logic. New York: Springer, Universitext.

    Google Scholar 

  • Smoryński, C. A. (1973). Applications of Kripke models. In Metamathematical investigation of intuitionistic arithmetic and analysis, (Vol. 344, pp. 324–391). Lecture notes in mathematics. Berlin: Springer.

    Google Scholar 

  • Solovay, R. M. (1976). Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3–4), 287–304.

    Article  Google Scholar 

  • Troelstra, A. S., & van Dalen, D. (1988). Constructivism in mathematics. Vol. I (Vol. 121) Studies in logic and the foundations of mathematics. Amsterdam: North-Holland Publishing Co., An introduction.

    Google Scholar 

  • Visser, A. (1981). Aspects of diagonalization and provability. Ph.D. thesis, Utrecht University.

    Google Scholar 

  • Visser, A. (1982). On the completeness principle: A study of provability in Heyting’s arithmetic and extensions. Annals of Mathematical Logic, 22(3), 263–295.

    Article  Google Scholar 

  • Visser, A. (1998). An overview of interpretability logic. In Advances in modal logic, Vol. 1 (Berlin, 1996) (Vol. 87, pp. 307–359) CSLI lecture notes. Stanford, CA: CSLI Publications.

    Google Scholar 

  • Visser, A. (2002). Substitutions of \(\Sigma _1^0\) sentences: Explorations between intuitionistic propositional logic and intuitionistic arithmetic. Annals of pure and applied logic, 114(1–3), 227–271. Commemorative symposium dedicated to Anne S. Troelstra (Noordwijkerhout, 1999).

    Google Scholar 

  • Visser, A., van Benthem, J., de Jongh, D., de Lavalette, R., & G. R., (1995). \({\rm NNIL}\), a study in intuitionistic propositional logic. In Modal logic and process algebra (Amsterdam, 1994), (Vol. 53, pp. 289–326), CSLI lecture notes. Stanford, CA: CSLI Publications.

    Google Scholar 

  • Visser, A., & Zoethout, J. (2019). Provability logic and the completeness principle. Annals of Pure and Applied Logic, 170(6), 718–753.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Mohammad Ardeshir for reading of the first draft of this paper and his very helpful comments, remarks and corrections. I am very grateful to the referee for her/his very helpful corrections, comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Mojtahedi .

Editor information

Editors and Affiliations

Appendices

Appendices

Table 9.1 List of axiom schemas
Table 9.2 List of translations
Table 9.3 List of all provability logics 
figure e

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mojtahedi, M. (2021). Hard Provability Logics. In: Mojtahedi, M., Rahman, S., Zarepour, M.S. (eds) Mathematics, Logic, and their Philosophies. Logic, Epistemology, and the Unity of Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-53654-1_9

Download citation

Publish with us

Policies and ethics