Skip to main content

Venous Thromboembolism After Trauma

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Among hospitalized patients, injury represents the single most significant risk factor for the development of venous thromboembolism. Without any form of prophylaxis, either deep venous thrombosis or pulmonary embolism will occur inn up to 55% of patients. In this chapter, we review the incidence, pathogenesis, risk factors, prophylaxis, and treatment of venous thromboembolism following trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirshson S. General patton: a soldier’s life. New York: Harper-Collins; 2002.

    Google Scholar 

  2. McCartney J. Pulmonary embolism following trauma. Am J Pathol. 1934;10:709–19.

    Google Scholar 

  3. Bandle J, Shackford SR, Kahl JE, Sise CB, Calvo RY, Shackford MC, Sise MJ. The value of lower-extremity duplex surveillance to detect deep vein thrombosis in trauma patients. J Trauma Acute Care Surg. 2013;74(2):575–80.

    Article  PubMed  Google Scholar 

  4. Geerts WH, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.

    Article  CAS  PubMed  Google Scholar 

  5. Geerts WH, Jay RM, Code KI, Chen E, Szalai JP, Saibil EA, Hamilton PA. A comparison of low-dose heparin with low-molecular-weight heparin as prophylaxis against venous thromboembolism after major trauma. N Engl J Med. 1996;335(10):701–7.

    Article  CAS  PubMed  Google Scholar 

  6. Cothren CC, Smith WR, Moore EE, Morgan SJ. Utility of once-daily dose of low-molecular-weight heparin to prevent venous thromboembolism in multisystem trauma patients. World J Surg. 2007;31(1):98–104.

    Article  PubMed  Google Scholar 

  7. Adams RC, Hamrick M, Berenguer C, Senkowski C, Ochsner MG. Four years of an aggressive prophylaxis and screening protocol for venous thromboembolism in a large trauma population. J Trauma. 2008;65(2):300–6; discussion 6–8.

    PubMed  Google Scholar 

  8. Pierce CA, Haut ER, Kardooni S, Chang DC, Efron DT, Haider A, Pronovost PJ, Cornwell EE 3rd. Surveillance bias and deep vein thrombosis in the national trauma data bank: the more we look, the more we find. J Trauma. 2008;64(4):932–6; discussion 6–7.

    PubMed  Google Scholar 

  9. Shackford SR, Cipolle MD, Badiee J, Mosby DL, Knudson MM, Lewis PR, McDonald VS, Olson EJ, Thompson KA, Van Gent JM, et al. Determining the magnitude of surveillance bias in the assessment of lower extremity deep venous thrombosis: a prospective observational study of two centers. J Trauma Acute Care Surg. 2016;80(5):734–9; discussion 40–1.

    Article  PubMed  Google Scholar 

  10. Thorson CM, Ryan ML, Van Haren RM, Curia E, Barrera JM, Guarch GA, Busko AM, Namias N, Livingstone AS, Proctor KG. Venous thromboembolism after trauma: a never event?*. Crit Care Med. 2012;40(11):2967–73.

    Article  PubMed  Google Scholar 

  11. Owings JT, Kraut E, Battistella F, Cornelius JT, O’Malley R. Timing of the occurrence of pulmonary embolism in trauma patients. Arch Surg. 1997;132(8):862–6; discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tuttle-Newhall JE, Rutledge R, Hultman CS, Fakhry SM. Statewide, population-based, time-series analysis of the frequency and outcome of pulmonary embolus in 318,554 trauma patients. J Trauma. 1997;42(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  13. Menaker J, Stein DM, Scalea TM. Incidence of early pulmonary embolism after injury. J Trauma. 2007;63(3):620–4.

    PubMed  Google Scholar 

  14. Knudson MM, Gomez D, Haas B, Cohen MJ, Nathens AB. Three thousand seven hundred thirty-eight posttraumatic pulmonary emboli: a new look at an old disease. Ann Surg. 2011;254(4):625–32.

    Article  PubMed  Google Scholar 

  15. Knudson MM, Ikossi DG, Khaw L, Morabito D, Speetzen LS. Thromboembolism after trauma: an analysis of 1602 episodes from the American College of Surgeons National Trauma Data Bank. Ann Surg. 2004;240(3):490–6; discussion 6–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sing RF, Camp SM, Heniford BT, Rutherford EJ, Dix S, Reilly PM, Holmes JH, Haut E, Hayanga A. Timing of pulmonary emboli after trauma: implications for retrievable vena cava filters. J Trauma. 2006;60(4):732–4; discussion 4–5.

    Article  PubMed  Google Scholar 

  17. Knudson MM, Ikossi DG. Venous thromboembolism after trauma. Curr Opin Crit Care. 2004;10(6):539–48.

    Article  PubMed  Google Scholar 

  18. Ho KM, Burrell M, Rao S, Baker R. Incidence and risk factors for fatal pulmonary embolism after major trauma: a nested cohort study. Br J Anaesth. 2010;105(5):596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schultz DJ, Brasel KJ, Washington L, Goodman LR, Quickel RR, Lipchik RJ, Clever T, Weigelt J. Incidence of asymptomatic pulmonary embolism in moderately to severely injured trauma patients. J Trauma. 2004;56(4):727–31; discussion 31–3.

    Article  PubMed  Google Scholar 

  20. Velmahos GC, Spaniolas K, Tabbara M, Abujudeh HH, de Moya M, Gervasini A, Alam HB. Pulmonary embolism and deep venous thrombosis in trauma: are they related? Arch Surg. 2009;144(10):928–32.

    Article  PubMed  Google Scholar 

  21. Van Gent JM, Calvo RY, Zander AL, Olson EJ, Sise CB, Sise MJ, Shackford SR. Risk factors for deep vein thrombosis and pulmonary embolism after traumatic injury: a competing risks analysis. J Trauma Acute Care Surg. 2017;83(6):1154–60.

    Article  PubMed  Google Scholar 

  22. Van Gent JM, Zander AL, Olson EJ, Shackford SR, Dunne CE, Sise CB, Badiee J, Schechter MS, Sise MJ. Pulmonary embolism without deep venous thrombosis: De novo or missed deep venous thrombosis? J Trauma Acute Care Surg. 2014;76(5):1270–4.

    Article  PubMed  Google Scholar 

  23. Park MS, Perkins SE, Spears GM, Ashrani AA, Leibson CL, Boos CM, Harmsen WS, Jenkins DH, Bailey KR, Ballman KV, et al. Risk factors for venous thromboembolism after acute trauma: a population-based case-cohort study. Thromb Res. 2016;144:40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Godat LN, Kobayashi L, Chang DC, Coimbra R. Can we ever stop worrying about venous thromboembolism after trauma? J Trauma Acute Care Surg. 2015;78(3):475–80; discussion 80–1.

    Article  PubMed  Google Scholar 

  25. Rattan R, Parreco J, Eidelson SA, Gold J, Dharmaraja A, Zakrison TL, Yeh DD, Ginzburg E, Namias N. Hidden burden of venous thromboembolism after trauma: a national analysis. J Trauma Acute Care Surg. 2018;85(5):899–906.

    Article  PubMed  Google Scholar 

  26. Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Haematol. 2008;143(2):180–90.

    Article  PubMed  Google Scholar 

  27. Aschoff S. Lectures in pathology. New York: Hoeber; 1924.

    Google Scholar 

  28. Gibbs NM. Venous thrombosis of the lower limbs with particular reference to bed-rest. Br J Surg. 1957;45(191):209–36.

    Article  CAS  PubMed  Google Scholar 

  29. Sevitt S, Gallagher N. Venous thrombosis and pulmonary embolism. A clinico-pathological study in injured and burned patients. Br J Surg. 1961;48:475–89.

    Article  CAS  PubMed  Google Scholar 

  30. Booth K, Rivet J, Flici R, Harvey E, Hamill M, Hundley D, Holland K, Hubbard S, Trivedi A, Collier B. Progressive mobility protocol reduces venous thromboembolism rate in trauma intensive care patients: a quality improvement project. J Trauma Nurs. 2016;23(5):284–9.

    Article  PubMed  Google Scholar 

  31. Hajibandeh S, Hajibandeh S, Antoniou GA, Scurr JR, Torella F. Neuromuscular electrical stimulation for the prevention of venous thromboembolism. Cochrane Database Syst Rev. 2017;11:CD011764.

    PubMed  Google Scholar 

  32. Lopez JA, Chen J. Pathophysiology of venous thrombosis. Thromb Res. 2009;123(Suppl 4):S30–4.

    Article  CAS  PubMed  Google Scholar 

  33. Park MS, Spears GM, Bailey KR, Xue A, Ferrara MJ, Headlee A, Dhillon SK, Jenkins DH, Zietlow SP, Harmsen WS, et al. Thrombin generation profiles as predictors of symptomatic venous thromboembolism after trauma: a prospective cohort study. J Trauma Acute Care Surg. 2017;83(3):381–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–49.

    Article  CAS  PubMed  Google Scholar 

  35. Mammen EF. Pathogenesis of venous thrombosis. Chest. 1992;102(6 Suppl):640S–4S.

    Article  CAS  PubMed  Google Scholar 

  36. Schaub RG, Lynch PR, Stewart GJ. The response of canine veins to three types of abdominal surgery: a scanning and transmission electron microscopic study. Surgery. 1978;83(4):411–24.

    CAS  PubMed  Google Scholar 

  37. Harr JN, Moore EE, Chin TL, Ghasabyan A, Gonzalez E, Wohlauer MV, Banerjee A, Silliman CC, Sauaia A. Platelets are dominant contributors to hypercoagulability after injury. J Trauma Acute Care Surg. 2013;74(3):756–62; discussion 62–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Owings JT, Bagley M, Gosselin R, Romac D, Disbrow E. Effect of critical injury on plasma antithrombin activity: low antithrombin levels are associated with thromboembolic complications. J Trauma. 1996;41(3):396–405; discussion -6.

    Article  CAS  PubMed  Google Scholar 

  39. Meissner MH, Chandler WL, Elliott JS. Venous thromboembolism in trauma: a local manifestation of systemic hypercoagulability? J Trauma. 2003;54(2):224–31.

    Article  PubMed  Google Scholar 

  40. Utter GH, Owings JT, Jacoby RC, Gosselin RC, Paglieroni TG. Injury induces increased monocyte expression of tissue factor: factors associated with head injury attenuate the injury-related monocyte expression of tissue factor. J Trauma. 2002;52(6):1071–7; discussion 7.

    Article  CAS  PubMed  Google Scholar 

  41. Kashuk JL, Moore EE, Sabel A, Barnett C, Haenel J, Le T, Pezold M, Lawrence J, Biffl WL, Cothren CC, et al. Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients. Surgery. 2009;146(4):764–72; discussion 72–4.

    Article  PubMed  Google Scholar 

  42. Cotton BA, Minei KM, Radwan ZA, Matijevic N, Pivalizza E, Podbielski J, Wade CE, Kozar RA, Holcomb JB. Admission rapid thrombelastography predicts development of pulmonary embolism in trauma patients. J Trauma Acute Care Surg. 2012;72(6):1470–5; discussion 5–7.

    Article  PubMed  Google Scholar 

  43. White AE, Edelman JJ, Lott N, Bannon PG, McElduff P, Curnow JL, Balogh ZJ. Characterization of the hypercoagulable state following severe orthopedic trauma. J Trauma Acute Care Surg. 2014;77(2):231–7.

    Article  PubMed  Google Scholar 

  44. Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7; discussion 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore HB, Moore EE, Liras IN, Gonzalez E, Harvin JA, Holcomb JB, Sauaia A, Cotton BA. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meizoso JP, Karcutskie CA, Ray JJ, Namias N, Schulman CI, Proctor KG. Persistent fibrinolysis shutdown is associated with increased mortality in severely injured trauma patients. J Am Coll Surg. 2017;224(4):575–82.

    Article  PubMed  Google Scholar 

  47. Allen CJ, Murray CR, Meizoso JP, Ginzburg E, Schulman CI, Lineen EB, Namias N, Proctor KG. Surveillance and early management of deep vein thrombosis decreases rate of pulmonary embolism in high-risk trauma patients. J Am Coll Surg. 2016;222(1):65–72.

    Article  PubMed  Google Scholar 

  48. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA, Samama CM. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e227S–e77S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geerts WH. Prevention of venous thromboembolism in high-risk patients. Hematology Am Soc Hematol Educ Program. 2006:462–6.

    Google Scholar 

  50. Rogers FB, Cipolle MD, Velmahos G, Rozycki G, Luchette FA. Practice management guidelines for the prevention of venous thromboembolism in trauma patients: the EAST practice management guidelines work group. J Trauma. 2002;53(1):142–64.

    Article  PubMed  Google Scholar 

  51. Shackford SR, Davis JW, Hollingsworth-Fridlund P, Brewer NS, Hoyt DB, Mackersie RC. Venous thromboembolism in patients with major trauma. Am J Surg. 1990;159(4):365–9.

    Article  CAS  PubMed  Google Scholar 

  52. Meizoso JP, Karcutskie CA, Ray JJ, Ruiz X, Ginzburg E, Namias N, Schulman CI, Proctor KG. A simplified stratification system for venous thromboembolism risk in severely injured trauma patients. J Surg Res. 2017;207:138–44.

    Article  PubMed  Google Scholar 

  53. Brill JB, Badiee J, Zander AL, Wallace JD, Lewis PR, Sise MJ, Bansal V, Shackford SR. The rate of deep vein thrombosis doubles in trauma patients with hypercoagulable thromboelastography. J Trauma Acute Care Surg. 2017;83(3):413–9.

    Article  PubMed  Google Scholar 

  54. Secemsky EA, Rosenfield K, Kennedy KF, Jaff M, Yeh RW. High burden of 30-day readmissions after acute venous thromboembolism in the United States. J Am Heart Assoc. 2018;7(13):e009047.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Van Haren RM, Valle EJ, Thorson CM, Jouria JM, Busko AM, Guarch GA, Namias N, Livingstone AS, Proctor KG. Hypercoagulability and other risk factors in trauma intensive care unit patients with venous thromboembolism. J Trauma Acute Care Surg. 2014;76(2):443–9.

    Article  PubMed  CAS  Google Scholar 

  56. CRASH-2 Trial Collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.

    Article  CAS  Google Scholar 

  57. Johnston LR, Rodriguez CJ, Elster EA, Bradley MJ. Evaluation of military use of tranexamic acid and associated thromboembolic events. JAMA Surg. 2018;153(2):169–75.

    Article  PubMed  Google Scholar 

  58. Myers SP, Kutcher ME, Rosengart MR, Sperry JL, Peitzman AB, Brown JB, Neal MD. Tranexamic acid administration is associated with an increased risk of posttraumatic venous thromboembolism. J Trauma Acute Care Surg. 2019;86(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  59. Meizoso JP, Dudaryk R, Mulder MB, Ray JJ, Karcutskie CA, Eidelson SA, Namias N, Schulman CI, Proctor KG. Increased risk of fibrinolysis shutdown among severely injured trauma patients receiving tranexamic acid. J Trauma Acute Care Surg. 2018;84(3):426–32.

    Article  PubMed  Google Scholar 

  60. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, Holcomb JB, Cotton BA. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78(5):905–9; discussion 9–11.

    Article  PubMed  Google Scholar 

  61. Zander AL, Olson EJ, Van Gent JM, Bandle J, Calvo RY, Shackford SR, Peck KA, Sise CB, Sise MJ, King BS. Does resuscitation with plasma increase the risk of venous thromboembolism? J Trauma Acute Care Surg. 2015;78(1):39–43; discussion -4.

    Article  CAS  PubMed  Google Scholar 

  62. Greenfield LJ, Proctor MC, Rodriguez JL, Luchette FA, Cipolle MD, Cho J. Posttrauma thromboembolism prophylaxis. J Trauma. 1997;42(1):100–3.

    Article  CAS  PubMed  Google Scholar 

  63. Acuna DL, Berg GM, Harrison BL, Wray T, Dorsch D, Sook C. Assessing the use of venous thromboembolism risk assessment profiles in the trauma population: is it necessary? Am Surg. 2011;77(6):783–9.

    Article  PubMed  Google Scholar 

  64. Gearhart MM, Luchette FA, Proctor MC, Lutomski DM, Witsken C, James L, Davis K Jr, Johannigman JA, Hurst JM, Frame SB. The risk assessment profile score identifies trauma patients at risk for deep vein thrombosis. Surgery. 2000;128(4):631–40.

    Article  CAS  PubMed  Google Scholar 

  65. Rogers FB, Shackford SR, Horst MA, Miller JA, Wu D, Bradburn E, Rogers A, Krasne M. Determining venous thromboembolic risk assessment for patients with trauma: the Trauma Embolic Scoring System. J Trauma Acute Care Surg. 2012;73(2):511–5.

    Article  PubMed  Google Scholar 

  66. Zander AL, Van Gent JM, Olson EJ, Shackford SR, Badiee J, Dunne CE, Sise CB, Sise MJ. Venous thromboembolic risk assessment models should not solely guide prophylaxis and surveillance in trauma patients. J Trauma Acute Care Surg. 2015;79(2):194–8.

    Article  PubMed  Google Scholar 

  67. Barrera LM, Perel P, Ker K, Cirocchi R, Farinella E, Morales Uribe CH. Thromboprophylaxis for trauma patients. Cochrane Database Syst Rev. 2013;3:CD008303.

    Google Scholar 

  68. Nathens AB, McMurray MK, Cuschieri J, Durr EA, Moore EE, Bankey PE, Freeman B, Harbrecht BG, Johnson JL, Minei JP, et al. The practice of venous thromboembolism prophylaxis in the major trauma patient. J Trauma. 2007;62(3):557–62; discussion 62–3.

    PubMed  Google Scholar 

  69. Louis SG, Sato M, Geraci T, Anderson R, Cho SD, Van PY, Barton JS, Riha GM, Underwood S, Differding J, et al. Correlation of missed doses of enoxaparin with increased incidence of deep vein thrombosis in trauma and general surgery patients. JAMA Surg. 2014;149(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  70. Corrigan TP, Kakkar VV, Fossard DP. Proceedings: low dose subcutaneous heparin--optimal dose regimen. Br J Surg. 1974;61(4):320.

    CAS  PubMed  Google Scholar 

  71. Kakkar VV, Corrigan TP, Fossard DP, Sutherland I, Thirwell J. Prevention of fatal postoperative pulmonary embolism by low doses of heparin. Reappraisal of results of international multicentre trial. Lancet. 1977;1(8011):567–9.

    CAS  PubMed  Google Scholar 

  72. Sagar S, Nairn D, Stamatakis JD, Maffei FH, Higgins AF, Thomas DP, Kakkar VV. Efficacy of low-dose heparin in prevention of extensive deep-vein thrombosis in patients undergoing total-hip replacement. Lancet. 1976;1(7970):1151–4.

    Article  CAS  PubMed  Google Scholar 

  73. Nurmohamed MT, Rosendaal FR, Buller HR, Dekker E, Hommes DW, Vandenbroucke JP, Briet E. Low-molecular-weight heparin versus standard heparin in general and orthopaedic surgery: a meta-analysis. Lancet. 1992;340(8812):152–6.

    Article  CAS  PubMed  Google Scholar 

  74. Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119(1 Suppl):64S–94S.

    Article  CAS  PubMed  Google Scholar 

  75. Bush S, LeClaire A, Hampp C, Lottenberg L. Review of a large clinical series: once- versus twice-daily enoxaparin for venous thromboembolism prophylaxis in high-risk trauma patients. J Intensive Care Med. 2011;26(2):111–5.

    Article  PubMed  Google Scholar 

  76. Jacobs BN, Cain-Nielsen AH, Jakubus JL, Mikhail JN, Fath JJ, Regenbogen SE, Hemmila MR. Unfractionated heparin versus low-molecular-weight heparin for venous thromboembolism prophylaxis in trauma. J Trauma Acute Care Surg. 2017;83(1):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Byrne JP, Geerts W, Mason SA, Gomez D, Hoeft C, Murphy R, Neal M, Nathens AB. Effectiveness of low-molecular-weight heparin versus unfractionated heparin to prevent pulmonary embolism following major trauma: a propensity-matched analysis. J Trauma Acute Care Surg. 2017;82(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  78. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e419S–e96S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, Svensson PJ, Veenstra DL, Crowther M, Guyatt GH. Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2 Suppl):e152S–e84S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geerts WH, Pineo GF, Heit JA, Bergqvist D, Lassen MR, Colwell CW, Ray JG. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):338S–400S.

    Article  CAS  PubMed  Google Scholar 

  81. Olson EJ, Bandle J, Calvo RY, Shackford SR, Dunne CE, Van Gent JM, Zander AL, Sikand H, Bongiovanni MS, Sise MJ, et al. Heparin versus enoxaparin for prevention of venous thromboembolism after trauma: a randomized noninferiority trial. J Trauma Acute Care Surg. 2015;79(6):961–8; discussion 8–9.

    Article  CAS  PubMed  Google Scholar 

  82. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):188S–203S.

    Article  CAS  PubMed  Google Scholar 

  83. Rostas JW, Brevard SB, Ahmed N, Allen J, Thacker D, Replogle WH, Gonzalez RP, Frotan AM, Simmons JD. Standard dosing of enoxaparin for venous thromboembolism prophylaxis is not sufficient for most patients within a trauma intensive care unit. Am Surg. 2015;81(9):889–92.

    Article  PubMed  Google Scholar 

  84. Ko A, Harada MY, Barmparas G, Chung K, Mason R, Yim DA, Dhillon N, Margulies DR, Gewertz BL, Ley EJ. Association between enoxaparin dosage adjusted by anti-factor Xa trough level and clinically evident venous thromboembolism after trauma. JAMA Surg. 2016;151(11):1006–13.

    Article  PubMed  Google Scholar 

  85. Dhillon NK, Smith EJT, Gillette E, Mason R, Barmparas G, Gewertz BL, Ley EJ. Trauma patients with lower extremity and pelvic fractures: should anti-factor Xa trough level guide prophylactic enoxaparin dose? Int J Surg. 2018;51:128–32.

    Article  PubMed  Google Scholar 

  86. Karcutskie CA, Dharmaraja A, Patel J, Eidelson SA, Martin AG, Lineen EB, Namias N, Schulman CI, Proctor KG. Relation of antifactor-Xa peak levels and venous thromboembolism after trauma. J Trauma Acute Care Surg. 2017;83(6):1102–7.

    Article  CAS  PubMed  Google Scholar 

  87. Karcutskie CA, Dharmaraja A, Patel J, Eidelson SA, Padiadpu AB, Martin AG, Lama G, Lineen EB, Namias N, Schulman CI, et al. Association of anti-factor Xa-guided dosing of enoxaparin with venous thromboembolism after trauma. JAMA Surg. 2018;153(2):144–9.

    Article  PubMed  Google Scholar 

  88. Berndtson AE, Costantini TW, Lane J, Box K, Coimbra R. If some is good, more is better: an enoxaparin dosing strategy to improve pharmacologic venous thromboembolism prophylaxis. J Trauma Acute Care Surg. 2016;81(6):1095–100.

    Article  CAS  PubMed  Google Scholar 

  89. Chapman SA, Irwin ED, Reicks P, Beilman GJ. Non-weight-based enoxaparin dosing subtherapeutic in trauma patients. J Surg Res. 2016;201(1):181–7.

    Article  CAS  PubMed  Google Scholar 

  90. Nunez JM, Becher RD, Rebo GJ, Farrah JP, Borgerding EM, Stirparo JJ, Lauer C, Kilgo P, Miller PR. Prospective evaluation of weight-based prophylactic enoxaparin dosing in critically ill trauma patients: adequacy of antixa levels is improved. Am Surg. 2015;81(6):605–9.

    Article  PubMed  Google Scholar 

  91. Bethea A, Adams E, Lucente FC, Samanta D, Chumbe JT. Improving pharmacologic prevention of VTE in trauma: IMPACT-IT QI project. Am Surg. 2018;84(6):1097–104.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kay AB, Majercik S, Sorensen J, Woller SC, Stevens SM, White TW, Morris DS, Baldwin M, Bledsoe JR. Weight-based enoxaparin dosing and deep vein thrombosis in hospitalized trauma patients: a double-blind, randomized, pilot study. Surgery. 2018;164(1):144–9.

    Google Scholar 

  93. Connelly CR, Van PY, Hart KD, Louis SG, Fair KA, Erickson AS, Rick EA, Simeon EC, Bulger EM, Arbabi S, et al. Thrombelastography-based dosing of enoxaparin for thromboprophylaxis in trauma and surgical patients: a randomized clinical trial. JAMA Surg. 2016;151(10):e162069.

    Article  PubMed  Google Scholar 

  94. Martel N, Lee J, Wells PS. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–5.

    Article  CAS  PubMed  Google Scholar 

  95. Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, Colwell CW. Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest. 2008;133(6 Suppl):381S–453S.

    Article  CAS  PubMed  Google Scholar 

  96. UpToDate. Enoxaparin: drug information 2019 [08/16/2019]. Available from: https://www.uptodate.com/contents/enoxaparin-drug-information?sectionName=Renal%20Impairment%20(Adult)&topicId=9407&search=enoxaparin&usage_type=panel&anchor=F50991262&source=panel_search_result&selectedTitle=1~111&kp_tab=drug_general&display_rank=1#F165126.

  97. Van PY, Schreiber MA. Contemporary thromboprophylaxis of trauma patients. Curr Opin Crit Care. 2016;22(6):607–12.

    Article  PubMed  Google Scholar 

  98. Byrne JP, Mason SA, Gomez D, Hoeft C, Subacius H, Xiong W, Neal M, Pirouzmand F, Nathens AB. Timing of pharmacologic venous thromboembolism prophylaxis in severe traumatic brain injury: a propensity-matched cohort study. J Am Coll Surg. 2016;223(4):621–31 e5.

    Article  PubMed  Google Scholar 

  99. American College of Surgeons Trauma Quality Improvement Program. Best practices in the management of traumatic brain injury 2015 [06/25/2019]. Available from: https://www.facs.org/~/media/files/quality%20programs/trauma/tqip/traumatic%20brain%20injury%20guidelines.ashx.

  100. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, et al. Guidelines for the management of severe traumatic brain injury. V. Deep vein thrombosis prophylaxis. J Neurotrauma. 2007;24 Suppl 1:S32–6..

    Google Scholar 

  101. Jehan F, O’Keeffe T, Khan M, Chi A, Tang A, Kulvatunyou N, Gries L, Joseph B. Early thromboprophylaxis with low-molecular-weight heparin is safe in patients with pelvic fracture managed nonoperatively. J Surg Res. 2017;219:360–5.

    Article  CAS  PubMed  Google Scholar 

  102. Sharpe JP, Gobbell WC, Carter AM, Pahlkotter MK, Muhlbauer MS, Camillo FX, Fabian TC, Croce MA, Magnotti LJ. Impact of venous thromboembolism chemoprophylaxis on postoperative hemorrhage following operative stabilization of spine fractures. J Trauma Acute Care Surg. 2017;83(6):1108–13.

    Article  PubMed  Google Scholar 

  103. Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Deep venous thrombosis and thromboembolism in patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):244–54.

    Article  PubMed  Google Scholar 

  104. Christie S, Thibault-Halman G, Casha S. Acute pharmacological DVT prophylaxis after spinal cord injury. J Neurotrauma. 2011;28(8):1509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Teasell RW, Hsieh JT, Aubut JA, Eng JJ, Krassioukov A, Tu L, Spinal Cord Injury Rehabilitation Evidence Review Research T. Venous thromboembolism after spinal cord injury. Arch Phys Med Rehabil. 2009;90(2):232–45.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khatsilouskaya T, Haltmeier T, Cathomas M, Eberle B, Candinas D, Schnuriger B. Thromboembolic prophylaxis with heparin in patients with blunt solid organ injuries undergoing non-operative treatment. World J Surg. 2017;41(5):1193–200.

    Article  PubMed  Google Scholar 

  107. Kwok AM, Davis JW, Dirks RC, Wolfe MM, Kaups KL. Time is now: venous thromboembolism prophylaxis in blunt splenic injury. Am J Surg. 2016;212(6):1231–6.

    Article  PubMed  Google Scholar 

  108. Murphy PB, Sothilingam N, Charyk Stewart T, Batey B, Moffat B, Gray DK, Parry NG, Vogt KN. Very early initiation of chemical venous thromboembolism prophylaxis after blunt solid organ injury is safe. Can J Surg. 2016;59(2):118–22.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Joseph B, Pandit V, Harrison C, Lubin D, Kulvatunyou N, Zangbar B, Tang A, O’Keeffe T, Green DJ, Gries L, et al. Early thromboembolic prophylaxis in patients with blunt solid abdominal organ injuries undergoing nonoperative management: is it safe? Am J Surg. 2015;209(1):194–8.

    Article  PubMed  Google Scholar 

  110. Rostas JW, Manley J, Gonzalez RP, Brevard SB, Ahmed N, Frotan MA, Mitchell E, Simmons JD. The safety of low molecular-weight heparin after blunt liver and spleen injuries. Am J Surg. 2015;210(1):31–4.

    Article  PubMed  Google Scholar 

  111. Datta I, Ball CG, Rudmik LR, Paton-Gay D, Bhayana D, Salat P, Schieman C, Smith DF, Vanwijngaarden-Stephens M, Kortbeek JB. A multicenter review of deep venous thrombosis prophylaxis practice patterns for blunt hepatic trauma. J Trauma Manag Outcomes. 2009;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eberle BM, Schnuriger B, Inaba K, Cestero R, Kobayashi L, Barmparas G, Oliver M, Demetriades D. Thromboembolic prophylaxis with low-molecular-weight heparin in patients with blunt solid abdominal organ injuries undergoing nonoperative management: current practice and outcomes. J Trauma. 2011;70(1):141–6; discussion 7.

    CAS  PubMed  Google Scholar 

  113. Norwood SH, McAuley CE, Berne JD, Vallina VL, Kerns DB, Grahm TW, McLarty JW. A potentially expanded role for enoxaparin in preventing venous thromboembolism in high risk blunt trauma patients. J Am Coll Surg. 2001;192(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  114. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy--III: reduction in venous thrombosis and pulmonary embolism by antiplatelet prophylaxis among surgical and medical patients. Antiplatelet Trialists’ Collaboration. BMJ. 1994;308(6923):235–46.

    Article  Google Scholar 

  115. Pulmonary Embolism Prevention (PEP) Trial Collaborative Group. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: pulmonary embolism prevention (PEP) trial. Lancet. 2000;355(9212):1295–302.

    Article  Google Scholar 

  116. Hovens MM, Snoep JD, Tamsma JT, Huisman MV. Aspirin in the prevention and treatment of venous thromboembolism. J Thromb Haemost. 2006;4(7):1470–5.

    Article  CAS  PubMed  Google Scholar 

  117. Watson HG, Chee YL. Aspirin and other antiplatelet drugs in the prevention of venous thromboembolism. Blood Rev. 2008;22(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  118. Rogers FB, Shackford SR, Wilson J, Ricci MA, Morris CS. Prophylactic vena cava filter insertion in severely injured trauma patients: indications and preliminary results. J Trauma. 1993;35(4):637–41; discussion 41–2.

    Article  CAS  PubMed  Google Scholar 

  119. Rogers FB, Shackford SR, Ricci MA, Wilson JT, Parsons S. Routine prophylactic vena cava filter insertion in severely injured trauma patients decreases the incidence of pulmonary embolism. J Am Coll Surg. 1995;180(6):641–7.

    CAS  PubMed  Google Scholar 

  120. Comes RF, Mismetti P, Afshari A, Force EVGT. European guidelines on perioperative venous thromboembolism prophylaxis: inferior vena cava filters. Eur J Anaesthesiol. 2018;35(2):108–11.

    Article  PubMed  Google Scholar 

  121. Shackford SR, Cook A, Rogers FB, Littenberg B, Osler T. The increasing use of vena cava filters in adult trauma victims: data from the American College of Surgeons National Trauma Data Bank. J Trauma. 2007;63(4):764–9.

    PubMed  Google Scholar 

  122. Haut ER, Garcia LJ, Shihab HM, Brotman DJ, Stevens KA, Sharma R, Chelladurai Y, Akande TO, Shermock KM, Kebede S, et al. The effectiveness of prophylactic inferior vena cava filters in trauma patients: a systematic review and meta-analysis. JAMA Surg. 2014;149(2):194–202.

    Article  PubMed  Google Scholar 

  123. Bandle J, Shackford SR, Sise CB, Knudson MM, Group CS. Variability is the standard: the management of venous thromboembolic disease following trauma. J Trauma Acute Care Surg. 2014;76(1):213–6.

    Article  PubMed  Google Scholar 

  124. Jones LM, Chu QD, Samra N, Hu B, Zhang WW, Tan TW. Evaluating the utilization of prophylactic inferior vena cava filters in trauma patients. Ann Vasc Surg. 2018;46:36–42.

    Article  PubMed  Google Scholar 

  125. Sarosiek S, Rybin D, Weinberg J, Burke PA, Kasotakis G, Sloan JM. Association between inferior vena cava filter insertion in trauma patients and in-hospital and overall mortality. JAMA Surg. 2017;152(1):75–81.

    Article  PubMed  Google Scholar 

  126. Hemmila MR, Osborne NH, Henke PK, Kepros JP, Patel SG, Cain-Nielsen AH, Birkmeyer NJ. Prophylactic inferior vena cava filter placement does not result in a survival benefit for trauma patients. Ann Surg. 2015;262(4):577–85.

    Article  PubMed  Google Scholar 

  127. Chen AH, Frangos SG, Kilaru S, Sumpio BE. Intermittent pneumatic compression devices – physiological mechanisms of action. Eur J Vasc Endovasc Surg. 2001;21(5):383–92.

    Article  CAS  PubMed  Google Scholar 

  128. Morris RJ, Woodcock JP. Evidence-based compression: prevention of stasis and deep vein thrombosis. Ann Surg. 2004;239(2):162–71.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Inada K, Koike S, Shirai N, Matsumoto K, Hirose M. Effects of intermittent pneumatic leg compression for prevention of postoperative deep venous thrombosis with special reference to fibrinolytic activity. Am J Surg. 1988;155(4):602–5.

    Article  CAS  PubMed  Google Scholar 

  130. Jacobs DG, Piotrowski JJ, Hoppensteadt DA, Salvator AE, Fareed J. Hemodynamic and fibrinolytic consequences of intermittent pneumatic compression: preliminary results. J Trauma. 1996;40(5):710–6; discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  131. Knudson MM, Lewis FR, Clinton A, Atkinson K, Megerman J. Prevention of venous thromboembolism in trauma patients. J Trauma. 1994;37(3):480–7.

    Article  CAS  PubMed  Google Scholar 

  132. Fisher CG, Blachut PA, Salvian AJ, Meek RN, O’Brien PJ. Effectiveness of pneumatic leg compression devices for the prevention of thromboembolic disease in orthopaedic trauma patients: a prospective, randomized study of compression alone versus no prophylaxis. J Orthop Trauma. 1995;9(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  133. Ginzburg E, Cohn SM, Lopez J, Jackowski J, Brown M, Hameed SM, Miami Deep Vein Thrombosis Study G. Randomized clinical trial of intermittent pneumatic compression and low molecular weight heparin in trauma. Br J Surg. 2003;90(11):1338–44.

    Article  CAS  PubMed  Google Scholar 

  134. Dennis JW, Menawat S, Von Thron J, Fallon WF Jr, Vinsant GO, Laneve LM, Jagger C, Frykberg ER. Efficacy of deep venous thrombosis prophylaxis in trauma patients and identification of high-risk groups. J Trauma. 1993;35(1):132–8; discussion 8–9.

    Article  CAS  PubMed  Google Scholar 

  135. Arabi YM, Khedr M, Dara SI, Dhar GS, Bhat SA, Tamim HM, Afesh LY. Use of intermittent pneumatic compression and not graduated compression stockings is associated with lower incident VTE in critically ill patients: a multiple propensity scores adjusted analysis. Chest. 2013;144(1):152–9.

    Article  PubMed  Google Scholar 

  136. Hull RD, Raskob GE, Gent M, McLoughlin D, Julian D, Smith FC, Dale NI, Reed-Davis R, Lofthouse RN, Anderson C. Effectiveness of intermittent pneumatic leg compression for preventing deep vein thrombosis after total hip replacement. JAMA. 1990;263(17):2313–7.

    Article  CAS  PubMed  Google Scholar 

  137. Clots Trials Collaboration, Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. Lancet. 2013;382(9891):516–24.

    Article  Google Scholar 

  138. Velmahos GC, Kern J, Chan LS, Oder D, Murray JA, Shekelle P. Prevention of venous thromboembolism after injury: an evidence-based report--part I: analysis of risk factors and evaluation of the role of vena caval filters. J Trauma. 2000;49(1):132–8; discussion 9.

    Article  CAS  PubMed  Google Scholar 

  139. Parra RO, Farber R, Feigl A. Pressure necrosis from intermittent-pneumatic-compression stockings. N Engl J Med. 1989;321(23):1615.

    Article  CAS  PubMed  Google Scholar 

  140. Lachmann EA, Rook JL, Tunkel R, Nagler W. Complications associated with intermittent pneumatic compression. Arch Phys Med Rehabil. 1992;73(5):482–5.

    CAS  PubMed  Google Scholar 

  141. Comerota AJ, Katz ML, White JV. Why does prophylaxis with external pneumatic compression for deep vein thrombosis fail? Am J Surg. 1992;164(3):265–8.

    Article  CAS  PubMed  Google Scholar 

  142. Cornwell EE 3rd, Chang D, Velmahos G, Jindal A, Baker D, Phillips J, Bonar J, Campbell K. Compliance with sequential compression device prophylaxis in at-risk trauma patients: a prospective analysis. Am Surg. 2002;68(5):470–3.

    Article  PubMed  Google Scholar 

  143. Gardner AM, Fox RH. The venous pump of the human foot--preliminary report. Bristol Med Chir J. 1983;98(367):109–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Laverick MD, McGivern RC, Crone MD, Mollan RAB. A comparison of the effects of electrical calf muscle stimulation and the venous foot pump on venous blood flow in the lower leg. Phlebology. 1990;5:285–90.

    Article  Google Scholar 

  145. Hamada SR, Espina C, Guedj T, Buaron R, Harrois A, Figueiredo S, Duranteau J. High level of venous thromboembolism in critically ill trauma patients despite early and well-driven thromboprophylaxis protocol. Ann Intensive Care. 2017;7(1):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest. 2001;119(1 Suppl):8S–21S.

    Article  CAS  PubMed  Google Scholar 

  147. Heit JA, Mohr DN, Silverstein MD, Petterson TM, O’Fallon WM, Melton LJ 3rd. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. Arch Intern Med. 2000;160(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  148. Weitz JI, Chan NC. Long-term management of venous thromboembolism: lessons from EINSTEIN CHOICE and other extension trials. Thromb Haemost. 2019;119(5):689–94.

    Article  PubMed  Google Scholar 

  149. Castellucci LA, Cameron C, Le Gal G, Rodger MA, Coyle D, Wells PS, Clifford T, Gandara E, Wells G, Carrier M. Clinical and safety outcomes associated with treatment of acute venous thromboembolism: a systematic review and meta-analysis. JAMA. 2014;312(11):1122–35.

    Article  CAS  PubMed  Google Scholar 

  150. Cohen AT, Hamilton M, Bird A, Mitchell SA, Li S, Horblyuk R, Batson S. Comparison of the non-VKA oral anticoagulants apixaban, dabigatran, and rivaroxaban in the extended treatment and prevention of venous thromboembolism: systematic review and network meta-analysis. PLoS One. 2016;11(8):e0160064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Steven R. Shackford, MD, and C. Beth Sise, RN, MSN, JD, for their contributions to the first edition of this chapter, which we have updated to include the most relevant recent evidence regarding venous thromboembolism after trauma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Meizoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meizoso, J.P., Proctor, K.G. (2021). Venous Thromboembolism After Trauma. In: Moore, H.B., Neal, M.D., Moore, E.E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-53606-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53606-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53605-3

  • Online ISBN: 978-3-030-53606-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics