Skip to main content

Automation and Autonomy in Robotic Surgery

  • Chapter
  • First Online:
Robotic Surgery

Abstract

Robotic surgery is the fastest growing sector of service robotics, because of strong users’ acceptance, both surgeons and patients, and the benefits this technology brings to a number of procedures. So far, robots are sophisticated instruments in the hand of surgeons, and they provide a great deal of automatic support during the execution of a procedure. In this chapter we will describe some of the steps necessary to achieve a new level of robotic surgery, i.e., add (semi) autonomous functions that will simplify surgical procedures, reduce cognitive and physical load, and increase patient safety. After a brief introduction to robotic surgery, we give some basic definitions to clarify the differences between automatic and autonomous devices. Then we describe, by means of an example, the technologies that must concur to give some degree of autonomy to a surgical robot. In particular we will describe the I-SUR (Intelligent Surgical Robot) project that demonstrated the feasibility of autonomous puncturing and suturing in a surgical context. After having described the I-SUR technologies, we will address two of the main challenges to autonomy, i.e., the availability of reliable research hardware and the technologies of knowledge representation. Some of the solutions to the knowledge representation problem will be described to show the wide spectrum of design choices available to researchers. In the conclusion we will summarize the technologies presented in the chapter, and we will indicate some of the technical and nontechnical challenges to robotic autonomy in a surgical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. Am J Robot Surg. 2014;1(1):12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robot Assisted Surgery. Updated 11 July 2019, cited 24 July 2019. Available from: https://en.wikipedia.org/wiki/Robot-assisted_surgery.

  3. Intuitive Surgical Corp. cited 24 July 2019. Available from: https://www.intuitive.com.

  4. Fong Y, Woo Y, Hyung WJ, Lau C, Strong VE. The SAGES atlas of robotic surgery. Cham: Springer International Publishing; 2018.

    Book  Google Scholar 

  5. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93(10):1296–9. https://doi.org/10.1302/0301-620X.93B10.27418.

    Article  CAS  PubMed  Google Scholar 

  6. Davies B. A review of the state-of-the-art of ‘smart’ systems in surgery. Int J Intelligent Syst Technol and Appl. 2010;8:423–33, ISSN: 1740-8865.

    Google Scholar 

  7. Bagga V, Bhattacharyya D. Robotics in neurosurgery. Ann R Coll Surg Engl. 2018;100(6_suppl):23–6. https://doi.org/10.1308/rcsann.supp1.19. Published online: 2 May 2018.

    Article  PubMed Central  Google Scholar 

  8. Accuray Corp. Cited 24 July 2019. Available from: https://www.accuray.com.

  9. Corindus Corp. Cited 2 July 2019. Available from: https://www.corindus.com.

  10. Atras Corp. Cited 24 July 2019. Available from: https://www.artashair.com/m/.

  11. Salman M, Bell T, Martin J, Bhuva K, Grim R, Ahuja V. Use, cost, complications, and mortality of robotic versus nonrobotic general surgery procedures based on a nationwide database. Am Surg. 2013;79(6):553–60.

    Article  PubMed  Google Scholar 

  12. Stryker Corp. Cited 24 July 2019. Available from: https://www.stryker.com/us/en/portfolios/orthopaedics/joint-replacement/mako-robotic-arm-assisted-surgery.html.

  13. Kazanzides P, Mittelstadt B, Musits B, Bargar W, Zuhars J, Williamson B, Cain P, Carbone E. An integrated system for cementless hip replacement. IEEE Eng Med Biol Mag. 1995;14(3):307–13.

    Article  Google Scholar 

  14. Coulson CJ, Taylor RP, Reid AP, Griffiths MV, Proops DW, Brett PN. An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial. Clin Otolaryngol. 2008;33(4):343–7.

    Article  CAS  PubMed  Google Scholar 

  15. Xia T, Baird C, Jallo G, Hayes K, Nakajima N, Hata N, Kazanzides P. An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot. 2008;4(4):321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Muradore R, Fiorini P, Akgun G, Barkana DE, Bonfe M, Boriero F, Caprara A, De Rossi G, Dodi R, Elle OJ, Ferraguti F, Gasperotti L, Gassert R, Mathiassen K, Handini D, Lambercy O, Li L, Kruusmaa M, Manurung AO, Meruzzi G, Nguyen HQP, Preda N, Riolfo G, Ristolainen A, Sanna A, Secchi C, Torsello M, Yantac AE. Development of a cognitive robotic system for simple surgical tasks. Int J Adv Robot Syst. 2015;12:37. https://doi.org/10.5772/60137.

    Article  Google Scholar 

  17. Knoll A, Mayer H, Staub C, Bauernschmitt R. Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying. Int J Med Robot. 2012;8(4):384–97.

    Article  PubMed  Google Scholar 

  18. Jackson RC, Desai V, Castillo JP, Avuolu MC. Needle-tissue interaction force state estimation for robotic surgical suturing. In: 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Oct. 2016, pp. 3659–3664.

    Google Scholar 

  19. Leonard S, Wu KL, Kim Y, Krieger A, Kim PC. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305–17.

    Article  PubMed  Google Scholar 

  20. Hernansanz A, Zerbato D, Gasperotti L, Scandola M, Fiorini P, Casals A. Improving the development of surgical skills with virtual fixtures in simulation. In: IPCAI. Berlin, Heidelberg: Springer; 2012. p. 157–66.

    Google Scholar 

  21. Siciliano B, Sciavicco L, Villani L, Oriolo G. Robotics modelling, planning and control. London: Springer-Verlag; 2009.

    Google Scholar 

  22. Muradore R, Fiorini P. A review of bilateral teleoperation algorithms. Acta Polytech Hung. 2016;13(1): 191–208.

    Google Scholar 

  23. DiStefano JJ, Stubberud AR, Williams IJ. Schaum’s outline of theory and problems of feedback and control systems: Outline Series Feedback and Control Systems. 2nd ed. London: McGraw-Hill; 1997. ISBN 0070170479.

    Google Scholar 

  24. Franklin GF, Powell JD, Workman ML. Digital control of dynamic systems. 3rd ed. Reading: Addison-Wesley; 1997. 9780201820546

    Google Scholar 

  25. Rasmussen J. The role of hierarchical knowledge representation in decision making and system management. IEEE Trans Syst Man Cybern. 1985;SMC-15(2):234.

    Article  Google Scholar 

  26. Automated Driving. Update 23 July 2019, cited 24 July 2019. Available from: https://web.archive.org/web/20170903105244/https://www.sae.org/misc/pdfs/automated_driving.pdf.

  27. Yang G-Z, Cambias J, Cleary K, et al. Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot. 2017;2:eaam8638.

    Article  PubMed  Google Scholar 

  28. Baresi L, Pasquale L, Spoletini P. Fuzzy goals for requirements-driven adaptation. In: IEEE International Requirements Engineering Conference, 2010, pp. 125–134.

    Google Scholar 

  29. van Lamsweerde A. Requirements engineering: from system goals to UML models to software specifications. Chichester: Wiley; 2009.

    Google Scholar 

  30. “FLAGS Graphical Designer,” http://code.google.com/p/flags/.

  31. Jackson D. Alloy. 2012. Available at: http://alloy.mit.edu/.

  32. Baier C, Katoen J-P. Principles of model checking. Cumberland: MIT Press; 2008.

    Google Scholar 

  33. Preda N, Ferraguti F, De Rossi G, et al. A cognitive robot control architecture for autonomous execution of surgical tasks. J Med Robot Res. 2016;1(4):1650008; (19 pages).

    Article  Google Scholar 

  34. Baresi L, Pasquale L. Live goals for adaptive service compositions. In: Conference SEMS’10, 2010, May 2–8, Cape Town.

    Google Scholar 

  35. Baresi L, Pasquale L. Adaptation goals for adaptive service-oriented architectures. In: Conference SEMS’10, May 2–8, 2010, Cape Town.

    Google Scholar 

  36. Object Management Group. UML v. 2.2 superstructure specification document N. formal/2009–02–02. 2009. Available at http://www.omg.org/spec/UML/2.2/.

  37. Mathiassen K, DallAlba D, Muradore R, Fiorini P, Elle OJ. Robust real-time needle tracking in 2D ultrasound images using statistical filtering. IEEE Trans Control Syst Technol. 2017;25:1.

    Article  Google Scholar 

  38. Ferraguti F, Preda N, Manurung A, Bonfe M, Lambercy O, Gassert R, Muradore R, Fiorini P, Secchi C. An energy tankbased interactive control architecture for autonomous and teleoperated robotic surgery. IEEE Trans Robot. 2015;31:1073–88.

    Article  Google Scholar 

  39. Muradore R, Bresolin D, Geretti L, Fiorini P, Villa T. Robotic surgery—formal verification of plans. IEEE Robot Autom Mag. 2011;18:24–32.

    Article  Google Scholar 

  40. da Vinci Research Kit wiki community. Updated 30 Sept 2018, cited 24 July 2019. Available from: https://research.intusurg.com/index.php/Main_Page.

  41. Robot Operating System. Cited 24 July 2019. Available from: https://www.ros.org.

  42. Nakawala H, Goncalves P, Fiorini P, Ferrigno G, De Momi E. Approaches for action sequence representation in robotics: a review. In: International Conference on Intelligent Robots and Systems, 2018, Madrid.

    Google Scholar 

  43. Levesque H, Pirri F, Reiter R. Foundations for the situation calculus. Electron Trans Artif Intell. 1998;2(3–4):159–78.

    Google Scholar 

  44. McCarthy J. Human-level AI: the logical road. 2018. Available from http://jmc.stanford.edu/articles/logicalai.html.

  45. Thielscher M. Introduction to the fluent calculus. Electron Trans Artif Intell. 1998;2(3–4):179–92.

    Google Scholar 

  46. Baader F, Horrocks I, Sattler U. Chapter 3. Description logics. In: van Harmelen F, Lifschitz V, Porter B, editors. Handbook of knowledge representation. Amsterdam: Elsevier; 2007.

    Google Scholar 

  47. Tenorth M, Beetz M. A unified representation for reasoning about robot actions, processes, and their effects on objects. Presented at IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012, Vilamoura, Algarve.

    Google Scholar 

  48. Dzifcak J, Scheutz M, Baral C, Schermerhorn P. What to do and how to do it: translating natural language directives into temporal and dynamic logic representation for goal management and action execution. Presented at IEEE International Conference on Robotics and Automation; 2009, pp. 41634168.

    Google Scholar 

  49. Kress-Gazit H, Fainekos G, Pappas G. Temporal-logic-based reactive mission and motion planning. IEEE Trans Robot. 2009;25(6):1370–81.

    Article  Google Scholar 

  50. Fikes RO, Nilsson NJ. STRIPS: a new approach to the application of theorem proving to problem solving. Presented at IJCAI, 1971, Sept 1–3, London.

    Google Scholar 

  51. Bohren J, Cousins S. The SMACH high-level executive [ROS news]. IEEE Robot Autom Mag. 2010;17(4):18–20.

    Article  Google Scholar 

  52. Ziparo VA, Iocchi L, Lima P, Nardi D, Palamara P. Petri net plans—a framework for collaboration and coordination in multi-robot systems. Auton Agent Multi-Agent Syst. 2011;23(3):344.

    Article  Google Scholar 

  53. Haage M, Malec J, Nilsson A, Stenmark M, Topp EA. Semantic modelling of hybrid controllers for robotic cells. Procedia Manuf. 2017;11:292–9.

    Article  Google Scholar 

  54. Costelha H, Lima P. Robot task plan representation by petri nets: modelling, identification, analysis and execution. Auton Robot. 2012;33:337.

    Article  Google Scholar 

  55. Applied Dexterity Corp. Cited 24 July 2019. Available from: http://applieddexterity.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Fiorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiorini, P. (2021). Automation and Autonomy in Robotic Surgery. In: Gharagozloo, F., Patel, V.R., Giulianotti, P.C., Poston, R., Gruessner, R., Meyer, M. (eds) Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-53594-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53594-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53593-3

  • Online ISBN: 978-3-030-53594-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics