Skip to main content

Learning Optimal Control of Water Distribution Networks Through Sequential Model-Based Optimization

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2020)

Abstract

Sequential Model-based Bayesian Optimization has been successfully applied to several application domains, characterized by complex search spaces, such as Automated Machine Learning and Neural Architecture Search. This paper focuses on optimal control problems, proposing a Sequential Model-based Bayesian Optimization framework to learn optimal control strategies. The strategies are synthetized by pressure-based rules, whose parameters are the design variables of the optimization problem whose black-box objective is the energy cost. A Bayesian optimization framework is presented which handles a quite general formalization of the control problem including multiple constraints, also black box. Relevant results on a real-life Water Distribution Network are reported, comparing different possible choices for the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  2. Močkus, J.: On Bayesian methods for seeking the extremum. In: Marchuk, G.I. (ed.) Optimization Techniques 1974. LNCS, vol. 27, pp. 400–404. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07165-2_55

    Chapter  Google Scholar 

  3. Zhigljavsky, A., Zilinskas, A.: Stochastic Global Optimization, vol. 9. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-74740-8

  4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  5. Archetti, F., Candelieri, A. (eds.): Bayesian Optimization and Data Science. SO. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

    Book  MATH  Google Scholar 

  6. Hutter, F., Kotthoff, L., Vanschoren, J.: Automated Machine Learning-Methods, Systems, Challenges. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-05318-5

  7. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Candelieri, A., Archetti, F.: Global optimization in machine learning: the design of a predictive analytics application. Soft. Comput. 23(9), 2969–2977 (2018). https://doi.org/10.1007/s00500-018-3597-8

    Article  Google Scholar 

  9. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006). 2(3)

    MATH  Google Scholar 

  10. Frazier, P.I.: Bayesian optimization. In: INFORMS TutORials in Operations Research, pp. 255–278 (2018)

    Google Scholar 

  11. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, pp. 278–282 (1995)

    Google Scholar 

  12. Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints. Optim. Lett. 10(2), 237–246 (2014). https://doi.org/10.1007/s11590-014-0772-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms, vol. 45. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Digabel, S.L., Wild, S.M.: A taxonomy of constraints in simulation-based optimization. arXiv preprint arXiv:1505.07881 (2015)

  16. Gramacy, R.B., Lee, H.K.M., Holmes, C., Osborne, M.: Optimization under unknown constraints. Bayesian Stat. 9, 229 (2012)

    Google Scholar 

  17. Bernardo, J., et al.: Optimization under unknown constraints. Bayesian Stat. 9(9), 229 (2011)

    MathSciNet  Google Scholar 

  18. Candelieri, A., Archetti, F.: Sequential model based optimization with black-box constraints: feasibility determination via machine learning. In: AIP Conference Proceedings, vol. 2070, no. 1, p. 020010. AIP Publishing LLC (2019)

    Google Scholar 

  19. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian Optimization with unknown constraints. In: Proceedings of the 32nd International Conference on Machine Learning, p. 37 (2015)

    Google Scholar 

  20. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  21. Bachoc, F., Helbert, C., Picheny, V.: Gaussian process optimization with failures: classification and convergence proof. HAL id: hal-02100819, version 1 (2019)

    Google Scholar 

  22. Sacher, M., et al.: A classification approach to efficient global optimization in presence of non-computable domains. Struct. Multidisc. Optim. 58(4), 1537–1557 (2018). https://doi.org/10.1007/s00158-018-1981-8

    Article  MathSciNet  Google Scholar 

  23. Antonio, C.: Sequential model based optimization of partially defined functions under unknown constraints. J. Glob. Optim. 573, 1–23 (2019). https://doi.org/10.1007/s10898-019-00860-4

    Article  Google Scholar 

  24. Mala-Jetmarova, H., Sultanova, N., Savic, D.: Lost in optimisation of water distribution systems? A literature review of system operation. Environ. Model Softw. 93, 209–254 (2017)

    Article  Google Scholar 

  25. Bene, J.G., Selek, I., Hos, C.: Comparison of deterministic and heuristic optimization solvers for water network scheduling problems. Water Sci. Technol. Water Supply (2013)

    Google Scholar 

  26. Castro Gama, M.E., Pan, Q., Salman, S., Jonoski, A.: Multivariate optimization to decrease total energy consumption in the water supply system of Abbiategrasso (Milan, Italy). Environ. Eng. Manag. J. (EEMJ) 14(9) (2015)

    Google Scholar 

  27. Castro Gama, M., Pan, Q., Lanfranchi, E.A., Jonoski, A., Solomatine, D.P.: Pump scheduling for a large water distribution network. Milan, Italy. Procedia Eng. 186, 436–443 (2017)

    Article  Google Scholar 

  28. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Glob. Optim. 71(1), 213–235 (2018). https://doi.org/10.1007/s10898-018-0641-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, D., Allen, T.T., Notz, W.I., Zheng, N.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Glob. Optim. 3(34), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization. Struct. Multidiscip. Optim. 48(3), 607–626 (2013)

    Article  Google Scholar 

  32. Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., Lang, M.: mlrMBO: A modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373 (2017)

  33. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been partially supported by the Italian project “PerFORM WATER 2030” – programme POR (Programma Operativo Regionale) FESR (Fondo Europeo di Sviluppo Regionale) 2014–2020, innovation call “Accordi per la Ricerca e l’Innovazione” (“Agreements for Research and Innovation”) of Regione Lombardia, (DGR N. 5245/2016 - AZIONE I.1.B.1.3 – ASSE I POR FESR 2014–2020) – CUP E46D17000120009.

We greatly acknowledge the DEMS (Department of Economics, Management and Statistics) Data Science Lab for supporting this work by providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Candelieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Candelieri, A., Galuzzi, B., Giordani, I., Archetti, F. (2020). Learning Optimal Control of Water Distribution Networks Through Sequential Model-Based Optimization. In: Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2020. Lecture Notes in Computer Science(), vol 12096. Springer, Cham. https://doi.org/10.1007/978-3-030-53552-0_28

Download citation

Publish with us

Policies and ethics