Skip to main content

Evenly Convex Sets: Linear Systems Containing Strict Inequalities

  • Chapter
  • First Online:
Even Convexity and Optimization

Abstract

This chapter deals with linear systems with an arbitrary (possibly infinite) number of weak and/or strict inequalities and their solution sets, the so-called evenly convex sets, which can be seen as the two faces of a same coin. Section 1.1 provides different characterizations of evenly convex sets and shows that this class of sets enjoys most of the well-known properties of the subclass of closed convex sets. Since the intersection of evenly convex sets belongs to the same family, any set has an evenly convex hull. Section 1.2 is focussed on the operations with evenly convex hulls and their relationships with other hulls. Section 1.3 reviews different types of separation theorems involving evenly convex sets. Section 1.4 provides existence theorems for linear systems with strict inequalities and characterizations of the linear inequalities which are consequence of consistent systems (those systems with nonempty solution set), which allows us to tackle set containment problems involving evenly convex sets. Section 1.5 is aimed to study the so-called evenly linear semi-infinite programming problems (i.e., linear semi-infinite programming problems with strict inequalities). Finally, Sect. 1.6 describes applications to polarity (treated in a detailed way as it was the problem which inspired the concept of evenly convex set), semi-infinite games, approximate reasoning, optimality conditions in mathematical programming, and strict separation of families of sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams R, Kerzner L (1978) A simplified test for optimality. J Optim Theory Appl 25:161–170

    Article  Google Scholar 

  2. Anderson EJ, Goberna MA, López MA (2001) Simplex-like trajectories on quasi-polyhedral convex sets. Math Oper Res 26:147–162

    Article  Google Scholar 

  3. Anderson EJ, Lewis AS (1989) An extension of the simplex algorithm for semi-infinite linear programming. Math Program 44:247–269

    Article  Google Scholar 

  4. Bair J (1980) Strict separation of several convex sets. Bull Soc Math Belg Ser B 32:135–148

    Google Scholar 

  5. Bateman PT, Rådström H, Hanner O et al. (1954) Seminar on convex sets: 1949–1950. Institute for Advanced Study, Princeton

    Google Scholar 

  6. Carver WB (1922) Systems of linear inequalities. Ann Math 23:212–220

    Article  Google Scholar 

  7. Charnes A, Cooper WW, Kortanek K (1965) On representations of semi-infinite programs which have no duality gaps. Manag Sci 12:113–121

    Article  Google Scholar 

  8. Cozman FG (2018) Evenly convex credal sets. Int J Approx Reason 103:124–138

    Article  Google Scholar 

  9. Daniilidis A, Martínez-Legaz JE (2002) Characterizations of evenly convex sets and evenly quasiconvex functions. J Math Anal Appl 273:58–66

    Article  Google Scholar 

  10. Doagooei AR, Mohebi H (2009) Dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces. J Global Optim 43:577–591

    Article  Google Scholar 

  11. Dür M, Jargalsaikhan B, Still G (2016) Genericity results in linear conic programming—a tour d’horizon. Math Oper Res 42:77–94

    Article  Google Scholar 

  12. Eremin II (1995) A finite iterative method for finding an interior point of an algebraic polyhedron, and estimation of the number of steps. Russ Math 39:16–22

    Google Scholar 

  13. Fan K (1968) On infinite systems of linear inequalities. J Math Anal Appl 21:475–478

    Article  Google Scholar 

  14. Fenchel W (1951) Convex cones, sets, and functions. Lecture notes. Princeton University, Princeton

    Google Scholar 

  15. Fenchel W (1952) A remark on convex sets and polarity. Comm Sèm Math Univ Lund Tome Supplémentaire 82–89

    Google Scholar 

  16. Frittelli M, Maggis M (2014) Conditionally evenly convex sets and evenly quasi-convex maps. J Math Anal Appl 413:169–184

    Article  Google Scholar 

  17. Fung GM, Mangasarian OL, Shavlik JW (2002 Knowledge-based support vector machine classifiers. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems. NIPS proceedings, pp 537–544

    Google Scholar 

  18. Gale D (1960) The theory of linear economic models. McGraw-Hill, New York

    Google Scholar 

  19. Gale D, Klee V (1959) Continuous convex sets. Math Scand 7:379–391

    Article  Google Scholar 

  20. Ghosh PK (1990) A solution of polygon containment, spatial planning, and other related problems using Minkowski operations. Comput Vis Graph Image Process 49:1–35

    Article  Google Scholar 

  21. Giannessi F, Maugeri A (2013) Variational inequalities and network equilibrium problems. Springer, New York

    Google Scholar 

  22. Goberna MA, Jeyakumar V, Dinh N (2006) Dual characterizations of set containments with strict convex inequalities. J Global Optim 34:33–54

    Article  Google Scholar 

  23. Goberna MA, Jornet V, Puente R, Todorov MI (1999) Analytical linear inequality systems and optimization. J Optim Theory Appl 103:95–119

    Article  Google Scholar 

  24. Goberna MA, Jornet V, Rodríguez MML (2003) On linear systems containing strict inequalities. Linear Algebra Appl 360:151–171

    Article  Google Scholar 

  25. Goberna MA, López MA (1998) Linear semi-infinite optimization. Wiley, Chichester

    Google Scholar 

  26. Goberna MA, López MA (2018) Recent contributions to linear semi-infinite optimization: an update. Ann Oper Res 271:237–278

    Article  Google Scholar 

  27. Goberna MA, López MA, Pastor J, Vercher E (1984) Alternative theorems for infinite systems with applications to semi-infinite games. Nieuw Arch Wisk (4) 2:218–234

    Google Scholar 

  28. Goberna MA, López MA, Volle M (2014) Primal attainment in convex infinite optimization duality. J Convex Anal 21:1043–1064

    Google Scholar 

  29. Goberna MA, López MA, Volle M (2015) New glimpses on convex infinite optimization duality. RACSAM, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales 109:431–450

    Google Scholar 

  30. Goberna MA, Rodríguez MML (2006) Analyzing linear systems containing strict inequalities via evenly convex hulls. Eur J Oper Res 169:1079–1095

    Article  Google Scholar 

  31. Goberna MA, Rodríguez MML, Vicente-Pérez J (2020) Evenly convex sets, and evenly quasiconvex functions, revisited. J Nonlinear Var Anal 4:189–206

    Google Scholar 

  32. Gordan P (1873) Über die Auflösungen linearer Gleichungen mit reelen Coefficienten (German). Math Ann 6:23–28

    Article  Google Scholar 

  33. Gruber G, Kruk S, Rendl F, Wolkowicz H (1997) Presolving for semidefinite program without constraints qualifications. In: Gruber G et al. (eds) Proceedings of second workshop on high performance optimization techniques (HPOP97). Rotterdam

    Google Scholar 

  34. Han D, Rizaldi A, El-Guindy A, Althoff M (2016) On enlarging backward reachable sets via Zonotopic set membership. In: 2016 IEEE international symposium on intelligent control, pp 1–8

    Google Scholar 

  35. Hiriart-Urruty JB, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, Berlin

    Book  Google Scholar 

  36. Jeyakumar V (2003) Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J Optim 13:947–959

    Article  Google Scholar 

  37. Jeyakumar V, Lee GM, Lee JH (2016) Sums of squares characterizations of containment of convex semialgebraic sets. Pac J Optim 12:29–42

    Google Scholar 

  38. Klee V (1968) Maximal separation theorems for convex sets. Trans Am Math Soc 134:133–147

    Article  Google Scholar 

  39. Klee V (1969) Separation and support properties of convex sets—a survey. In: Balakrishnan AV (ed) Control theory and the calculus of variations. Academic Press, New York, pp 235–303

    Google Scholar 

  40. Klee V, Maluta E, Zanco C (2007) Basic properties of evenly convex sets. J Convex Anal 14:137–148

    Google Scholar 

  41. Kortanek KO, Medvedev VG (2001) Semi-infinite programming and applications in finance. In: Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, Boston

    Google Scholar 

  42. Kostyukova OI (1988) Investigation of the linear extremal problems with continuum constraints (in Russian). Preprint no. 26 (336), Institute of Mathematics, Academy of Sciences of BSSR, Minsk

    Google Scholar 

  43. Kostyukova OI, Tchemisova TV (2012) Optimality criteria without constraint qualifications for linear semidefinite problems. J Math Sci 182:126–143

    Article  Google Scholar 

  44. Kostyukova OI, Tchemisova TV (2014) On a constructive approach to optimality conditions for convex SIP problems with polyhedral index sets. Optimization 63:67–91

    Article  Google Scholar 

  45. Kostyukova OI, Tchemisova TV (2017) Optimality conditions for convex semi-infinite programming problems with finitely representable compact index sets. J Optim Theory Appl 175:76–103

    Article  Google Scholar 

  46. Kuhn HW (1956) Solvability and consistency for linear equations and inequalities. Am Math Mon 63:217–232

    Article  Google Scholar 

  47. Llorca N, Tijs S, Timmer J (2003) Semi-infinite assignment problems and related games. Math Methods Oper Res 57:67–78

    Article  Google Scholar 

  48. López MA, Vercher E (1986) Convex semi-infinite games. J Optim Theory Appl 50:289–312

    Article  Google Scholar 

  49. Mangasarian OL (2000) Generalized support vector machines. In: Smola AJ, Bartlett PL, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 135–146

    Google Scholar 

  50. Mangasarian OL (2002) Set containment characterization. J Global Optim 24:473–480

    Article  Google Scholar 

  51. Martínez-Legaz JE (1983) A generalized concept of conjugation. In: Hiriart-Urruty JB, Oettli W, Stoer J (eds) Optimization, theory and algorithms (Lecture notes in pure and applied mathematics), vol 86. Marcel Dekker, New York, pp 45–59

    Google Scholar 

  52. Martínez-Legaz (1988) Quasiconvex duality theory by generalized conjugation methods. Optimization 19:603–652

    Google Scholar 

  53. Martínez-Legaz JE (1991) Duality between direct and indirect utility functions under minimal hypotheses. J Math Econ 20:199–209

    Article  Google Scholar 

  54. Minkowski H (1896) Geometrie der Zahlen, Erste Lieferung (German). Teubner, Leipzig

    Google Scholar 

  55. Minkowski H (1911) Theorie der Konvexen Körper (German). Insbesondere Begründung ihres Oberflächenbegriffs, Gesammelte Abhandlungen II, Leipzig

    Google Scholar 

  56. Motzkin TS (1936) Beiträge zur theorie der linearen ungleichungen (German). Azriel [Reprinted in: Cantor D, Gordon B, Rothschild B (eds) Theodore S. Motzkin: selected papers. Birkhäuser, Boston, 1983, pp 1–80]

    Google Scholar 

  57. Naraghirad E (2009) On linear systems containing strict inequalities in reflexive Banach spaces. Appl Math Sci 3:2119–2132

    Google Scholar 

  58. Passy U, Prisman EZ (1984) Conjugacy in quasiconvex programming. Math Program 30:121–146

    Article  Google Scholar 

  59. Passy U, Prisman EZ (1985) A convexlike duality scheme for quasiconvex programs. Math Program 32:278–300

    Article  Google Scholar 

  60. Penot JP, Volle M (1990) On quasiconvex duality. Math Oper Res 15:597–625

    Article  Google Scholar 

  61. Połowczuk W, Radzik T, Wiȩcek P (2012) Simple equilibria in semi-infinite games. Int Game Theory Rev 14:1–19

    Google Scholar 

  62. Puente R, Vera de Serio VN (1999) Locally Farkas–Minkowski linear semi-infinite systems. TOP 7:103–121

    Article  Google Scholar 

  63. Rockafellar RT. Polyhedral convex sets with some closed faces missing. Private communication to Victor Klee

    Google Scholar 

  64. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  Google Scholar 

  65. Rockafellar RT (1984) Network flows and monotropic optimization. Wiley-Interscience, New York

    Google Scholar 

  66. Rodríguez MML, Vicente-Pérez J (2011) On evenly convex functions. J Convex Anal 18:721–736

    Google Scholar 

  67. Rubinstein GS (1981) A comment on Voigt’s paper “A duality theorem for linear semi-infinite programming”. Optimization 12:31–32

    Google Scholar 

  68. Sadraddini S, Tedrake R (2019) Linear encodings for polytope containment problems. In: 2019 IEEE 58th conference on decision and control (CDC), Nice, France, pp 4367–4372

    Google Scholar 

  69. Sánchez-Soriano J, Llorca N, Tijs S, Timmer J (2001) Semi-infinite assignment and transportation games. In: Goberna MA, López MA (eds) Semi-infinite programming: recent advances. Kluwer, Dordrecht, pp 349–363

    Chapter  Google Scholar 

  70. Sánchez-Soriano J, Llorca N, Tijs S, Timmer J (2002) On the core of semi-infinite transportation games with divisible goods. Eur J Oper Res 142:463–475

    Article  Google Scholar 

  71. Schröder J (1970) Range-domain implications for linear operators. SIAM J Appl Math 19:235–242

    Article  Google Scholar 

  72. Schröder J (1972) Duality in linear range-domain implications. In: Shisha O (ed) Inequalities III. Academic Press, New York, pp 321–332

    Google Scholar 

  73. Slater ML (1950) Lagrange multipliers revisited. Cowles commission discussion paper no. 403 (report) [Reprinted in: Giorgi G, Kjeldsen TH (eds) Traces and emergence of nonlinear programming. Birkhäuser, Basel, 2014, pp 293–306]

    Google Scholar 

  74. Soyster AL (1975) A semi-infinite game. Manag Sci 21:806–812

    Article  Google Scholar 

  75. Steinitz E (1914) Bedingt konvergente Reihen und konvexe Systeme II (German). J Reine Angew Math 144:1–40

    Google Scholar 

  76. Stoer J, Witzgall C (1970) Convexity and optimization in finite dimensions I. Springer, Berlin

    Book  Google Scholar 

  77. Suzuki S (2010) Set containment characterization with strict and weak quasiconvex inequalities. J Global Optim 47:273–285

    Article  Google Scholar 

  78. Suzuki S, Kuroiwa D (2009) Set containment characterization for quasiconvex programming. J Global Optim 45:551–563

    Article  Google Scholar 

  79. Suzuki S, Kuroiwa D (2011) On set containment characterization and constraint qualification for quasiconvex programming. J Optim Theory Appl 149:554–563

    Article  Google Scholar 

  80. Szilágyi P (1999) Nonhomogeneous linear theorems of the alternative. Pure Math Appl 10:141–159

    Google Scholar 

  81. Tijs SH (1979) Semi-infinite linear programs and semi-infinite matrix games. Nieuw Arch Wisk (3) 27:197–214

    Google Scholar 

  82. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    Book  Google Scholar 

  83. Wolkowicz H (1983) Method of reduction in convex programming. J Optim Theory Appl 40:349–378

    Article  Google Scholar 

  84. Yang XQ, Yen ND (2010) Structure and weak sharp minimum of the Pareto solution set for piecewise linear multiobjective optimization. J Optim Theory Appl 147:113–124

    Article  Google Scholar 

  85. Zhu YJ (1966) Generalizations of some fundamental theorems on linear inequalities. Acta Math Sin 16:25–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fajardo, M.D., Goberna, M.A., Rodríguez, M.M.L., Vicente-Pérez, J. (2020). Evenly Convex Sets: Linear Systems Containing Strict Inequalities. In: Even Convexity and Optimization. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-030-53456-1_1

Download citation

Publish with us

Policies and ethics