Skip to main content

Anterior Segment OCT: Fundamentals and Technological Basis

  • Chapter
  • First Online:
Atlas of Anterior Segment Optical Coherence Tomography

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 586 Accesses

Abstract

The last 30 years have seen a progressive evolution of diagnostic devices for the anterior ocular segment. The latest milestone in the field has surely been the application of optical coherence tomography (OCT) to produce images with exquisitely high definition.

A few manufacturers of ophthalmic instruments have put on the market their own anterior segment instrument based on one of the two available Fourier domain OCT techniques, i.e., spectral domain or SD-OCT and swept source or SS-OCT. Each of these devices provides the clinician high-quality angle-to-angle pictures of the anterior segment and quick scans of a large number of sections from which extended topographic maps are extracted. OCT technology can also provide a noninvasive and reliable method to measure corneal epithelial thickness if its resolution is sufficiently high. Despite the impressive level of detail in OCT images, the traditional Placido disc technology may maintain a useful additional role as its resolution in measuring the curvatures of the anterior corneal surface is still unmatched even by modern OCT technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OCT:

Optical coherence tomography

AS-OCT:

Anterior segment optical coherence tomography

TD-OCT:

Time domain optical coherence tomography

FD-OCT:

Fourier domain optical coherence tomography

SD-OCT:

Spectral domain optical coherence tomography

SS-OCT:

Swept source optical coherence tomography

SLD:

Superluminescent diode

References

  1. Klyce SD. Computer-assisted corneal topography. High-resolution graphic presentation and analysis of keratoscopy. Invest Ophthalmol Vis Sci. 1984;25(12):1426–35.

    CAS  PubMed  Google Scholar 

  2. Mejía-Barbosa Y, Malacara-Hernández D. A review of methods for measuring corneal topography. Optom Vis Sci. 2001;78(4):240–53.

    Article  Google Scholar 

  3. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H, Schmetterer LF, et al. In-vivo dual-beam optical coherence tomography. In: Proceedings of SPIE 2083. Microscopy, holography, and interferometry in biomedicine; 1994.

    Google Scholar 

  4. Fercher AF, Hitzenberger CK, Kamp G, El-Zaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117(1):43–8.

    Article  CAS  Google Scholar 

  5. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    Article  CAS  Google Scholar 

  6. Swanson EA, Lzatt JA, Hee MR, Huang D, Lin CP, Schuman JS, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett. 1993;18:1864–6.

    Article  CAS  Google Scholar 

  7. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7(4):502–7.

    Article  CAS  Google Scholar 

  8. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22(5):340–2.

    Article  CAS  Google Scholar 

  9. Fourier Domain OCT Casia2, Delight in sight, pamphlet, Tomey, Nagoya.

    Google Scholar 

  10. Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. New York: Springer; 2019. p. 278.

    Google Scholar 

  11. Petroll WM, Goldberg D, Lindsey SS, Kelley PS, Cavanagh HD, Bowman RW, et al. Confocal assessment of the corneal response to intracorneal lens insertion and laser in situ keratomileusis with flap creation using IntraLase. J Cataract Refract Surg. 2006;32:1119–28.

    Article  Google Scholar 

  12. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425–33.

    Article  Google Scholar 

  13. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25(7):604–10.

    Article  Google Scholar 

  14. Reinstein DZ, Silverman RH, Trokel SL, Coleman DJ. Corneal pachymetric topography. Ophthalmology. 1994;101:432–8.

    Article  CAS  Google Scholar 

  15. Reinstein DZ, Silverman RH, Sutton HF, Coleman DJ. Very high-frequency ultrasound corneal analysis identifies anatomic correlates of optical complications of lamellar refractive surgery: anatomic diagnosis in lamellar surgery. Ophthalmology. 1999;106:474–82.

    Article  CAS  Google Scholar 

  16. Reinstein DZ, Ameline B, Puech M, Montefiore G, Laroche L. VHF digital ultrasound three-dimensional scanning in the diagnosis of myopic regression after corneal refractive surgery. J Refract Surg. 2005;21:480–4.

    Article  Google Scholar 

  17. Reinstein DZ, Srivannaboon S, Gobbe M, Archer TJ, Silverman RH, Sutton H, Coleman DJ. Epithelial thickness profile changes induced by myopic LASIK as measured by Artemis very high-frequency digital ultrasound. J Refract Surg. 2009;25:444–50.

    Article  Google Scholar 

  18. Lohmann CP, Patmore A, Reischl U, Marshall J. The importance of the corneal epithelium in excimer-laser photorefractive keratectomy. Ger J Ophthalmol. 1996;5:368–72.

    CAS  PubMed  Google Scholar 

  19. Lohmann CP, Güell JL. Regression after LASIK for the treatment of myopia: the role of the corneal epithelium. Semin Ophthalmol. 1998;13:79–82.

    Article  CAS  Google Scholar 

  20. Lohmann CP, Reischl U, Marshall J. Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg. 1999;25:712–5.

    Article  CAS  Google Scholar 

  21. Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H. Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol. 1996;80:545–8.

    Article  CAS  Google Scholar 

  22. Spadea L, Fasciani R, Necozione S, Balestrazzi E. Role of the corneal epithelium in refractive changes following laser in situ keratomileusis for high myopia. J Refract Surg. 2000;16:133–9.

    CAS  PubMed  Google Scholar 

  23. Erie JC, Patel SV, McLaren JW, Ramirez M, Hodge DO, Maguire LJ, Bourne WM. Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology. 2002;109:1447–52.

    Article  Google Scholar 

  24. Patel SV, Erie JC, McLaren JW, Bourne WM. Confocal microscopy changes in epithelial and stromal thickness up to 7 years after LASIK and photorefractive keratectomy for myopia. J Refract Surg. 2007;23:385–92.

    Article  Google Scholar 

  25. Reinstein DZ, Srivannaboon S, Holland SP. Epithelial and stromal changes induced by intacs examined by three-dimensional very high-frequency digital ultrasound. J Refract Surg. 2001;17:310–8.

    CAS  PubMed  Google Scholar 

  26. Lovisolo CF, Mularoni A, Calossi A, Stewart CW. Complications of refractive keratotomy. In: Alio J, Azar DT, editors. Management of complications in refractive surgery. Berlin: Springer; 2008. p. 197–224.

    Chapter  Google Scholar 

  27. Swarbrick HA, Wong G, O’Leary DJ. Corneal response to orthokeratology. Optom Vis Sci. 1998;75:791–9.

    Article  CAS  Google Scholar 

  28. Lu F, Simpson T, Sorbara L, Fonn D. Malleability of the ocular surface in response to mechanical stress induced by orthokeratology contact lenses. Cornea. 2008;27:133–41.

    Article  Google Scholar 

  29. Sridharan R, Swarbrick H. Corneal response to short-term orthokeratology lens wear. Optom Vis Sci. 2003;80:200–6.

    Article  Google Scholar 

  30. Haque S, Fonn D, Simpson T, Jones L. Epithelial thickness changes from the induction of myopia with CRTH RGP contact lenses. Invest Ophthalmol Vis Sci. 2008;49:3345–50.

    Article  Google Scholar 

  31. Reinstein DZ, Gobbe M, Archer TJ, Couch D, Bloom B. Epithelial, stromal and corneal pachymetry changes during orthokeratology. Optom Vis Sci. 2009;86:E1006–14.

    Article  Google Scholar 

  32. Scroggs MW, Proia AD. Histopathological variation in keratoconus. Cornea. 1992;11:553–9.

    Article  CAS  Google Scholar 

  33. Haque S, Simpson T, Jones L. Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J Refract Surg. 2006;22:486–93.

    Article  Google Scholar 

  34. Aktekin M, Sargon MF, Cakar P, Celik HH, Firat E. Ultrastructure of the cornea epithelium in keratoconus. Okajimas Folia Anat Jpn. 1998;75:45–53.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethical Requirements

Gabriele Vestri and Francesco Versaci are employees of CSO SRL. Claudio Macaluso declares that he has no conflict of interest.

No human studies were carried out by the authors for this article.

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Vestri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vestri, G., Macaluso, C., Versaci, F. (2021). Anterior Segment OCT: Fundamentals and Technological Basis. In: Alió, J.L., del Barrio, J.L.A. (eds) Atlas of Anterior Segment Optical Coherence Tomography. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-53374-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53374-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53373-1

  • Online ISBN: 978-3-030-53374-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics