Skip to main content

Nanotechnology: Can It Be a Crusader in Diabesity?

  • Chapter
  • First Online:
Obesity and Diabetes

Abstract

Research in nanotechnology has been slowly expanding. It allows for expansion of work on a molecular scale. There has been success in targeting adipocytes, macrophages, fibroblasts, and vascular cells, which are related to diabetes and obesity pathophysiology. Development in nanosensors for usage in diabetic monitoring could provide better real-time monitoring and early detection of progression for patients, and this technology could help in earlier, life-saving intervention. In conclusion, nanotechnology could lead to the development of new treatments or novel prevention of diabesity in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Carbone S, Del Buono MG, Ozemek C, Lavie CJ (2019) Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Prog Cardiovasc Dis 62(4):327–333. https://doi.org/10.1016/j.pcad.2019.08.004

    Article  PubMed  Google Scholar 

  • Sibuyi NRS et al (2019) Nanotechnology advances towards development of targeted-treatment for obesity. J Nanobiotechnol 17(1). https://doi.org/10.1186/s12951-019-0554-3. PMID: 31842876

  • Smith CJ, Perfetti TA, Hayes AW, Berry SC (2020 Mar 24) Obesity as a source of endogenous compounds associated with chronic disease: a review. Toxicol Sci. pii: kfaa042. https://doi.org/10.1093/toxsci/kfaa042

  • Dehdari L, Dehdari T (2019) The determinants of anti-diabetic medication adherence based on the experiences of patients with type 2 diabetes. Arch Publ Health 77(1). https://doi.org/10.1186/s13690-019-0347-z. PMID: 31123588

  • Vasan SK, Osmond C, Canoy D, Christodoulides C, Neville MJ, Di Gravio C, Fall CHD, Karpe F (2018) Comparison of regional fat measurements by dual-energy X-ray absorptiometry and conventional anthropometry and their association with markers of diabetes and cardiovascular disease risk. Int J Obes 42(4):850–857. https://doi.org/10.1038/ijo.2017.289

    Article  CAS  Google Scholar 

  • Shi J et al (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–30. https://doi.org/10.1021/nl102184c. PMID: 20726522

  • Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14:45–57. PMID: 25430866

    Google Scholar 

  • American Diabetes Association (ADA) (2019) Diabetes care. 42(suppl 1): S1–159. http://care.diabetesjournals.org/content/41/Supplement 1

  • Ash GI et al (2019) Promises of nanotherapeutics in obesity. Trends Endocrinol Metab 30(6):369–383. https://doi.org/10.1016/j.tem.2019.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capoccia K, Odegard PS, Letassy N (2016 Feb) Medication: a systematic review of the literature. Diabetes Educ 42(1):34–71. https://doi.org/10.1177/0145721715619038

    Article  PubMed  Google Scholar 

  • Devadasu VR, Bhardwa V, Kumar MNVR (2013) Can controversial nanotechnology promise drug delivery? Chem Rev 1686–735. PMID: 23276295

    Google Scholar 

  • Devadasu VR et al (2017) Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diab Dev Countries 38(1):11–19. https://doi.org/10.1007/s13410-017-0558-1

    Article  CAS  Google Scholar 

  • Marta T, Luca S, Serena M, Luisa F, Fabio C (2016) What is the role of nanotechnology in diagnosis and treatment of metastatic breast cancer? Promising Scenarios for the Near Future. J Nanomater Hindawi Publishing Corporation 2016

    Google Scholar 

  • Cui, M., Wu, W., Hovgaard L, Lu Y, Chen D, Qi J (2015) Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int J Pharm 489:277–284. PMID: 25957702

    Google Scholar 

  • Giovannucci E et al (2010) Consensus report explores connection between diabetes and cancer. Oncol Times 32(14):40–41

    Article  Google Scholar 

  • Lee JH, Jeong HS, Lee DH, Beac S, Kim T, Lee GH et al (2017) Targeted hyaluronate–hollow gold nanosphere conjugate for anti-obesity photothermal lipolysis. ACS Biomater Sci Eng 3(12):3646–3653

    Article  CAS  Google Scholar 

  • Sheng W, Alhasan AH, DiBernardo G, Almutairi KM, Rubin JP, DiBernardo BE et al (2014) Gold nanoparticle-assisted selective photothermolysis of adipose tissue (NanoLipo). Plast Reconstr Surg Glob Open 2(12):e283. PMID: 25587517

    Google Scholar 

  • Deza E, Deza M (2006) Dictionary of distances. Elsevier

    Google Scholar 

  • Allhoff F et al (2010) What is nanotechnology and why does it matter?: from science to ethics. Wiley-Blackwell

    Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. Proceedings of the international conference of production engineering, London, Part II. British Society of Precision Engineering

    Google Scholar 

  • Drexler KE (2000) Engines of creation: the coming era of nanotechnology. Eric Drexler

    Google Scholar 

  • Disanto RM et al (2015) Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(4), 548–564., https://doi.org/10.1002/wnan.1329. PMID: 25641955

  • Liu J, Zhang SM, Chen P, Cheng L, Zhou W, Tang WX et al (2007) Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med 18:2205–2210. PMID: 17668296

    Google Scholar 

  • Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–93c. https://doi.org/10.1016/j.molmed.2010.08.002. PMID: 20869318

  • Rodbard D (2016) Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol Ther 18:S2–3. PMID: 26784127

    Google Scholar 

  • Wang H-C, Lee A-R (2015) Recent developments in blood glucose sensors. J Food Drug Anal 23(2):191–200. https://doi.org/10.1016/j.jfda.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhao XL, Li ZH, Zhu ZG, Qian SH, Flewitt AJ (2017) Current and emerging technology for continuous glucose monitoring. Sensors (Basel) 17(1). pii: E182. https://doi.org/10.3390/s17010182

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25. PMID: 23542065

    Google Scholar 

  • Rahiman S (2012) Nanomedicine current trends in diabetes management. J Nanomed Nanotechnol 3:3–8

    Article  Google Scholar 

  • Meetoo D, Wong L, Ochieng B (2019) Smart Tattoo: technology for monitoring blood glucose in the future. Br J Nurs 28(2):110–115

    Article  Google Scholar 

  • Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A et al (2016) Pancreatic β-cell imaging in humans: fiction or option? Blackwell 18:6–15. https://doi.org/10.1111/dom.12544. PMID: 26228188

  • Rocca A et al (2015) Pilot in vivo investigation of cerium oxide nanoparticles as a novel anti-obesity pharmaceutical formulation. Nanomedicine 11(7):1725–1734. https://doi.org/10.1016/j.nano.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zu Y et al (2018) Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B: Biointerfaces 164:414–423. https://doi.org/10.1016/j.colsurfb.2017.12.044. PMID: 29433059

  • Cao Y, Liang H, Zhang F et al (2016) Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. J Exp Clin Cancer Res 35(35):68. PMID: 27084680

    Google Scholar 

Download references

Acknowledgement

Morris L. Lichtenstein Jr. Medical Research Foundation supports Mahua Choudhury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahua Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Speer, A.M., Choudhury, M. (2020). Nanotechnology: Can It Be a Crusader in Diabesity?. In: Faintuch, J., Faintuch, S. (eds) Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-53370-0_70

Download citation

Publish with us

Policies and ethics