Skip to main content

Pancreatic Islets of Langerhans: Adapting Cell and Molecular Biology to Changes of Metabolism

  • Chapter
  • First Online:
Obesity and Diabetes

Abstract

Langerhans published in 1869, the thesis entitled “Contributions to the microscopic anatomy of the pancreas” (translated from German). In a healthy adult man, the islet mass is usually 1–2% of the pancreas mass, and can reach 500,000–1 million islets with 50–250 μm of diameter. Nowadays, at least five types of cells were identified in the pancreatic islets, which are responsible for the secretion of hormones: alpha, beta, delta, PP, and epsilon cells. Although pancreatic progenitor cells can be differentiated from stem cells, progenitor cells treated with some combinations of signaling factors can generate different cell types. Beta-cells are hard to produce, and people should be informed on how important it is to have a healthy lifestyle, in order to avoid exposing beta cells to the toxicity of sustained hyperglycemia. In the future, beta-cell neogenesis could repopulate the injured islets of the diabetic individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulreda MH, Rodriguez-Diaz R, Cabrera O, Caicedo A, Berggren PO (2016) The different faces of the pancreatic islet. Adv Exp Med Biol 938:11–24

    Article  PubMed  Google Scholar 

  • Adam PA, Teramo K, Raiha N, Gitlin D, Schwartz R (1969) Human fetal insulin metabolism early in gestation. Response to acute elevation of the fetal glucose concentration and placental tranfer of human insulin-I-131. Diabetes 18:409–416

    Article  CAS  PubMed  Google Scholar 

  • Adeghate E, Kalasz H (2011) Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med Chem J 5:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anazawa T, Okajima H, Masui T, Uemoto S (2019) Current state and future evolution of pancreatic islet transplantation. Ann Gastroenterol Surg 3:34–42

    Article  PubMed  Google Scholar 

  • Baetens D, Malaisse-Lagae F, Perrelet A, Orci L (1979) Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206:1323–1325

    Article  CAS  PubMed  Google Scholar 

  • Balboa D, Saarimaki-Vire J, Otonkoski T (2019) Concise review: human pluripotent stem cells for the modeling of pancreatic beta-cell pathology. Stem Cells 37:33–41

    Article  PubMed  Google Scholar 

  • Barach JH (1952) Paul Langerhans, 1847–1888. Diabetes 1:411–413

    Article  CAS  PubMed  Google Scholar 

  • Beamish CA, Zhang L, Szlapinski SK, Strutt BJ, Hill DJ (2017) An increase in immature beta-cells lacking Glut2 precedes the expansion of beta-cell mass in the pregnant mouse. PLoS One 12:e0182256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benninger RKP, Hodson DJ (2018) New understanding of beta-cell heterogeneity and in situ islet function. Diabetes 67:537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden P, Houtz J, LeachSD KR (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosco D, Armanet M, Morel P et al (2010) Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 59:1202–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Brissova M, Shostak A, Fligner CL et al (2015) Human islets have fewer blood vessels than mouse islets and the density of islet vascular structures is increased in type 2 diabetes. J Histochem Cytochem 63:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  • Cabrera O, Berman DM, KenyonNS RC, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caicedo A (2013) Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin Cell Dev Biol 24:11–21

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy H, Gu X, Enge M et al (2017) Converting adult pancreatic islet alpha cells into beta cells by targeting both Dnmt1 and Arx. Cell Metab 25:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chmelova H, Cohrs CM et al (2016) Alterations in beta-cell calcium dynamics and efficacy outweigh islet mass adaptation in compensation of insulin resistance and prediabetes onset. Diabetes 65:2676–2685

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Yang Y, Zhou Y et al (2016) Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab 23:128–142

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Villani V, Buono R et al (2017) Fasting-mimicking diet promotes Ngn3-driven beta-cell regeneration to reverse diabetes. Cell 168:775–788. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chera S, Herrera PL (2016) Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 40:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chera S, Baronnier D, Ghila L et al (2014) Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang SH, BaumannCA KM et al (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948

    Article  CAS  PubMed  Google Scholar 

  • Cigliola V, Ghila L, Thorel F et al (2018) Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon(+) alpha-cells. Nat Cell Biol 20:1267–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinicaltrials (2017). https://clinicaltrials.gov/ct2/show/NCT03163511. Accessed 5 Sept 2019.

  • Dai XQ, Manning Fox JE, Chikvashvili D et al (2012) The voltage-dependent potassium channel subunit Kv2.1 regulates insulin secretion from rodent and human islets independently of its electrical function. Diabetologia 55:1709–1720

    Article  CAS  PubMed  Google Scholar 

  • Daneshmandi S, Karimi MH, Pourfathollah AA (2017) TGF-beta engineered mesenchymal stem cells (TGF-beta/MSCs) for treatment of Type 1 diabetes (T1D) mice model. Int Immunopharmacol 44:191–196

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Gilhooly CH, Golden JK et al (2007) Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am J Clin Nutr 85:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Descamps O, Riondel J, Ducros V, Roussel AM (2005) Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting. Mech Ageing Dev 126:1185–1191

    Article  CAS  PubMed  Google Scholar 

  • Dhawan S, Georgia S, Bhushan A (2007) Formation and regeneration of the endocrine pancreas. Curr Opin Cell Biol 19:634–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Cairano ES, Moretti S, Marciani P et al (2016) Neurotransmitters and neuropeptides: new players in the control of islet of langerhans’ cell mass and function. J Cell Physiol 231:756–767

    Article  PubMed  CAS  Google Scholar 

  • Dirice E, Kahraman S, Jiang W et al (2014) Soluble factors secreted by T cells promote beta-cell proliferation. Diabetes 63:188–202

    Article  CAS  PubMed  Google Scholar 

  • Esguerra JL, Eliasson L (2014) Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 5:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folli F, La Rosa S, Finzi G et al (2018) Pancreatic islet of Langerhans’ cytoarchitecture and ultrastructure in normal glucose tolerance and in type 2 diabetes mellitus. Diabetes Obes Metab 20(Suppl 2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Franklin ZJ, Tsakmaki A, Fonseca Pedro P et al (2018) Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass. Diabetes Obes Metab 20:599–609

    Article  CAS  PubMed  Google Scholar 

  • Fraulob JC, Ogg-Diamantino R, Santos CF, Aguila MB, Mandarim-de-Lacerda CA (2010) A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr 46:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuyama K, Chera S, van Gurp L et al (2019) Diabetes relief in mice by glucose-sensing insulin-secreting human alpha-cells. Nature 567:43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habener JF, Stanojevic V (2013) Alpha cells come of age. Trends Endocrinol Metab 24:153–163

    Article  CAS  PubMed  Google Scholar 

  • Hamidi A, Song J, Thakur N et al (2017) TGF-beta promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85alpha. Sci Signal 10:eaal4186

    Article  PubMed  CAS  Google Scholar 

  • Hatori M, Vollmers C, Zarrinpar A et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman B (1959a) Actual distribution of the number and volume of the islets of Langerhans in different size classes in non-diabetic humans of varying ages. Nature 184(Suppl 19):1498–1499

    Article  PubMed  Google Scholar 

  • Hellman B (1959b) The frequency distribution of the number and volume of the islets Langerhans in man. I. Studies on non-diabetic adults. Acta Soc Med Ups 64:432–460

    CAS  PubMed  Google Scholar 

  • Holmberg J, Perlmann T (2012) Maintaining differentiated cellular identity. Nat Rev Genet 13:429–439

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R, Arthur-Farraj P (2015) The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev Cell 34:613–620

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Fischbach S, Xiao X (2018) The role of the TGFbeta receptor signaling pathway in adult beta cell proliferation. Int J Mol Sci 19:3136

    Article  PubMed Central  CAS  Google Scholar 

  • Katoh M, Katoh M (2004) Human FOX gene family (review). Int J Oncol 25:1495–1500

    CAS  PubMed  Google Scholar 

  • Kervran A, Randon J, Girard JR (1979) Dynamics of glucose-isnduced plasma insulin increase in the rat fetus at different stages of gestation. Effects of maternal hypothermia and fetal decapitation. Biol Neonate 35:242–248

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Park S (2018) IGF-1 protects SH-SY5Y cells against MPP(+)-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocr Connect 7:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Kido Y, SchererPE WMF, Accili D (2007) Analysis of compensatory beta-cell response in mice with combined mutations of Insr and Irs2. Am J Physiol Endocrinol Metab 292:E1694–E1701

    Article  CAS  PubMed  Google Scholar 

  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M (2009) Islet architecture: a comparative study. Islets 1:129–136

    Article  PubMed  Google Scholar 

  • Kitamura T, Nakae J, Kitamura Y et al (2002) The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110:1839–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korc M (2019) Pathogenesis of pancreatic cancer-related diabetes mellitus: Quo Vadis? Pancreas 48:594–597

    Article  PubMed  PubMed Central  Google Scholar 

  • Langerhans P (1869) Beiträge zur mikroskopischen Anatomie der Bauchspeicheldrüse. Inaugural-dissertation. Medicinischen Facultät der Friedrich Wilhelm Universität, Berlin, Gustav Lange

    Google Scholar 

  • Leung PS (2010) Physiology of the pancreas. Adv Exp Med Biol 690:13–27

    Article  PubMed  Google Scholar 

  • Lietzke SE, Bose S, Cronin T et al (2000) Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol Cell 6:385–394

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Wright J, Guo H, Xiong Y, Arvan P (2014) Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam Horm 95:35–62

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Javaheri A, Godar RJ et al (2017) Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 13:1952–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Weiss MA, Arunagiri A et al (2018) Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 20(Suppl 2):28–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandarim-de-Lacerda CA (2019) Pancreatic islet (of Langerhans) revisited. Histol Histopathol 34:985–993

    CAS  PubMed  Google Scholar 

  • Marinho TS, Aguila MB, Mandarim-de-Lacerda CA (2019a) Pancreatic islet stereology: estimation of beta cells mass. Int J Morphol 37:1131–1134

    Article  Google Scholar 

  • Marinho TS, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB (2019b) Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 65:103–112

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58

    Article  PubMed  Google Scholar 

  • Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594

    Article  CAS  PubMed  Google Scholar 

  • Mezza T, Muscogiuri G, Sorice GP et al (2014) Insulin resistance alters islet morphology in nondiabetic humans. Diabetes 63:994–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauck MA, Meier JJ (2018) Incretin hormones: their role in health and disease. Diabetes Obes Metab 20(Suppl 1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Nichols RJ, New C, Annes JP (2014) Adult tissue sources for new beta cells. Transl Res 163:418–431

    Article  CAS  PubMed  Google Scholar 

  • Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10:397–405

    Article  CAS  PubMed  Google Scholar 

  • Omodei D, Fontana L (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 585:1537–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penicaud L (2017) Autonomic nervous system and pancreatic islet blood flow. Biochimie 143:29–32

    Article  CAS  PubMed  Google Scholar 

  • Reusens B, Remacle C (2006) Programming of the endocrine pancreas by the early nutritional environment. Int J Biochem Cell Biol 38:913–922

    Article  CAS  PubMed  Google Scholar 

  • Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52:581–587

    Article  CAS  PubMed  Google Scholar 

  • Rulifson IC, KarnikSK HPW et al (2007) Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A 104:6247–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad MJ, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR (1992) Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) Beta-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36:111–117

    Article  PubMed  Google Scholar 

  • Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138:1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Schiebinger G, Shu J, Tabaka M et al (2019) Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176:1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequea DA, Sharma N, Arias EB, Cartee GD (2012) Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci 67:1279–1285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soggia A, Hoarau E, Bechetoille C, Simon MT, Heinis M, Duvillie B (2011) Cell-based therapy of diabetes: what are the new sources of beta cells? Diabetes Metab 37:371–375

    Article  CAS  PubMed  Google Scholar 

  • Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21:599–609

    Article  CAS  PubMed  Google Scholar 

  • Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor R, Al-Mrabeh A, Sattar N (2019) Understanding the mechanisms of reversal of type 2 diabetes. Lanc Diab Endocrinol 7:726–736

    Article  CAS  Google Scholar 

  • Theis FJ, Lickert H (2019) A map of beta-cell differentiation pathways supports cell therapies for diabetes. Nature 569:342–343

    Article  CAS  PubMed  Google Scholar 

  • Thorel F, Damond N, Chera S et al (2011) Normal glucagon signaling and beta-cell function after near-total alpha-cell ablation in adult mice. Diabetes 60:2872–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thowfeequ S, Myatt EJ, Tosh D (2007) Transdifferentiation in developmental biology, disease, and in therapy. Develop Dynam Off Pub Amer Associ Anatom 236:3208–3217

    CAS  Google Scholar 

  • Tuomilehto J, Lindstrom J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Vakilian M, Tahamtani Y, Ghaedi K (2019) A review on insulin trafficking and exocytosis. Gene 706:52–61

    Article  CAS  PubMed  Google Scholar 

  • Varady KA (2011) Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev 12:e593–e601

    Article  CAS  PubMed  Google Scholar 

  • Veres A, Faust AL, Bushnell HL et al (2019) Charting cellular identity during human in vitro beta-cell differentiation. Nature 569:368–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S, Han R, Zhao J et al (2018) Intermittent administration of a fasting-mimicking diet intervenes in diabetes progression, restores beta cells and reconstructs gut microbiota in mice. Nutr Metab (Lond) 15:80

    Article  CAS  Google Scholar 

  • Wémeau J-L, Crépin G, Dubois G, Triboulet J-P, Wattel F (2018) Les grands Académiciens lillois. Bull Acad Natle Méd 202:1229–1258

    Google Scholar 

  • Wierup N, Sundler F, Heller RS (2014) The islet ghrelin cell. J Mol Endocrinol 52:R35–R49

    Article  CAS  PubMed  Google Scholar 

  • Wojtusciszyn A, Branchereau J, Esposito L et al (2019) Indications for islet or pancreatic transplantation: statement of the TREPID working group on behalf of the Societe francophone du diabete (SFD), Societe francaise d’endocrinologie (SFE), Societe francophone de transplantation (SFT) and Societe francaise de nephrologie—dialyse—transplantation (SFNDT). Diabetes Metab 45:224–237

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Gaffar I, Guo P et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Nat Sci U S A 111:E1211–E1220

    CAS  Google Scholar 

  • Xiao X, Fischbach S, Song Z et al (2016) Transient suppression of TGFbeta receptor signaling facilitates human islet transplantation. Endocrinology 157:1348–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen AW, Sander JW (2014) Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav 33:110–114

    Article  PubMed  Google Scholar 

  • Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest in this manuscript.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) (CNPq, Grant No 302.920/2016-1 to CAML, and 305.865/2017-0 to MBA), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Faperj, Grant No E-26/202.935/2017 to CAML, and E-26/202.795/2017 to MBA). These foundations had no interference in the accomplishment and submission of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Mandarim-de-Lacerda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ornellas, F., Karise, I., Aguila, M.B., Mandarim-de-Lacerda, C.A. (2020). Pancreatic Islets of Langerhans: Adapting Cell and Molecular Biology to Changes of Metabolism. In: Faintuch, J., Faintuch, S. (eds) Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-53370-0_13

Download citation

Publish with us

Policies and ethics