Skip to main content

An Experimental Study of ILP Formulations for the Longest Induced Path Problem

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2020)

Abstract

Given a graph \(G=(V,E)\), the LongestInducedPath problem asks for a maximum cardinality node subset \(W\subseteq V\) such that the graph induced by W is a path. It is a long established problem with applications, e.g., in network analysis. We propose novel integer linear programming (ILP) formulations for the problem and discuss efficient implementations thereof. Comparing them with known formulations from literature, we prove that they are beneficial in theory, yielding stronger relaxations. Moreover, our experiments show their practical superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  4. Bektaş, T., Gouveia, L.: Requiem for the Miller-Tucker-Zemlin subtour elimination constraints? EJOR 236(3), 820–832 (2014)

    Article  MathSciNet  Google Scholar 

  5. Berman, P., Schnitger, G.: On the complexity of approximating the independent set problem. Inf. Comput. 96(1), 77–94 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2), 238–255 (1995)

    Article  MathSciNet  Google Scholar 

  7. Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. SAGE Publishing, Thousand Oaks (2013)

    Google Scholar 

  8. Buckley, F., Harary, F.: On longest induced paths in graphs. Chin. Quart. J. Math. 3(3), 61–65 (1988)

    MathSciNet  Google Scholar 

  9. Bökler, F., Chimani, M., Wagner, M.H., Wiedera, T.: An experimental study of ILP formulations for the longest induced path problem (2020). arXiv:2002.07012 [cs.DS]

  10. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: CCC, pp. 250–263 (2007)

    Google Scholar 

  11. Chimani, M., Gutwenger, C., Juenger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 543–569. Chapman and Hall/CRC (2013). www.ogdf.net

  12. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Obtaining optimal \(k\)-cardinality trees fast. J. Exp. Algorithmics 14, 5:2.5–5:2.23 (2010)

    Google Scholar 

  13. Chimani, M., Kandyba, M., Ljubić, I., Mutzel, P.: Strong formulations for 2-node-connected Steiner network problems. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 190–200. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7_18

    Chapter  Google Scholar 

  14. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006). http://igraph.sf.net

    Google Scholar 

  15. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_36

    Chapter  Google Scholar 

  16. Fischetti, M.: Facets of two Steiner arborescence polyhedra. Math. Program. 51, 401–419 (1991)

    Article  MathSciNet  Google Scholar 

  17. Fischetti, M., Salazar-Gonzalez, J.J., Toth, P.: The generalized traveling salesman and orienteering problems. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 609–662. Springer, Boston (2007). https://doi.org/10.1007/0-306-48213-4_13

    Chapter  MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  19. Gavril, F.: Algorithms for maximum weight induced paths. Inf. Process. Lett. 81(4), 203–208 (2002)

    Article  MathSciNet  Google Scholar 

  20. Gleixner, A., et al.: The SCIP optimization suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin (2018). https://scip.zib.de

  21. Goemans, M.X.: The steiner tree polytope and related polyhedra. Math. Program. 63, 157–182 (1994)

    Article  MathSciNet  Google Scholar 

  22. Goemans, M.X., Myung, Y.S.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)

    Article  MathSciNet  Google Scholar 

  23. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs without short cycles and long induced paths. Discrete Appl. Math. 167, 107–120 (2014)

    Article  MathSciNet  Google Scholar 

  24. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988)

    Book  Google Scholar 

  25. Håstad, J.: Clique is hard to approximate within \(n^{1 - \epsilon }\). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  26. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2010)

    Google Scholar 

  27. Jaffke, L., Kwon, O., Telle, J.A.: Polynomial-time algorithms for the longest induced path and induced disjoint paths problems on graphs of bounded mim-Width. In: IPEC. LIPIcs, vol. 89, pp. 21:1–13 (2017)

    Google Scholar 

  28. Kaminski, J., Schober, M., Albaladejo, R., Zastupailo, O., Hidalgo, C.: Moviegalaxies - Social Networks in Movies. Harvard Dataverse, V3 (2018)

    Google Scholar 

  29. Lozin, V., Rautenbach, D.: Some results on graphs without long induced paths. Inf. Process. Lett. 88(4), 167–171 (2003)

    Article  MathSciNet  Google Scholar 

  30. Matsypura, D., Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: On exact solution approaches for the longest induced path problem. EJOR 278, 546–562 (2019)

    Article  MathSciNet  Google Scholar 

  31. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3(1), 23–28 (1965)

    Article  MathSciNet  Google Scholar 

  32. Nesetril, J., de Mendez, P.O.: Sparsity - Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

    Book  MATH  Google Scholar 

  33. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  34. Polzin, T.: Algorithms for the Steiner problem in networks. Ph.D. thesis, Saarland University, Saarbrücken, Germany (2003)

    Google Scholar 

  35. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  36. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and chordless paths. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 313–324. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko H. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bökler, F., Chimani, M., Wagner, M.H., Wiedera, T. (2020). An Experimental Study of ILP Formulations for the Longest Induced Path Problem. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2020. Lecture Notes in Computer Science(), vol 12176. Springer, Cham. https://doi.org/10.1007/978-3-030-53262-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53262-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53261-1

  • Online ISBN: 978-3-030-53262-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics