Skip to main content

Genetically Engineered Fish: Potential Impacts on Aquaculture, Biodiversity, and the Environment

  • Chapter
  • First Online:
GMOs

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 19))

Abstract

Studies on transgenic fish for the aquaculture industry have focused on improving growth rates, enhancing disease resistance, altering body composition, acting as biological factories for medical proteins, and even altering temperature tolerance and coloration. The future impact of transgenesis will likely be quite large. Growth hormone-transgenic salmon has been approved for human consumption and has been introduced to the market in Canada and soon to the USA. This is the first human consumption of approved transgenic meat. Transgene insertion has many pleiotropic effects. Several studies have projected the fitness of transgenic fish to be low, in general, compared to non-transgenic and wild fish; thus, their environmental risk is likely low and they would have minimal, if any, long-term impact on ecosystems or biodiversity. However, there have been no actual escapements; thus, only projections of risk are available based on small-scale experiments and the characteristics of transgenic fish compared to controls. An active area of research is repressible transgenic sterilization and sterilization using gene editing, both of which would allow application of transgenic fish with only short-term consequences for ecosystems in the worst-case scenario. Transgenic technology could also be potentially used to reduce or eliminate populations of nuisance species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass NY, Elwakil HE, Hemeida AA, Abdelsalam NR, Ye Z, Su B, Alsaqufi AS, Weng CC, Trudeau VL, Dunham RA (2016) Genotype-environment interactions for survival at low and sub-zero temperatures at varying salinity for channel catfish, hybrid catfish and transgenic channel catfish. Aquaculture 458:140–148

    Google Scholar 

  • Abdelrahman H, ElHady M, Alcivar-Warren A et al (2017) Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genom 18:191–214. https://doi.org/10.1186/s12864-017-3557-1

    Article  Google Scholar 

  • Abernathy J, Panserat S, Welker T, Plagne-Juan E, Sakhrani D, Higgs DA, Audouin F, Devlin RH, Overturf K (2015) Food shortage causes differential effects on body composition and tissue-specific gene expression in salmon modified for increased growth hormone production. Mar Biotechnol (NY) 17:753–767

    CAS  Google Scholar 

  • Abrahams MV, Sutterlin A (1999) The foraging and antipredator behaviour of growth-enhanced transgenic Atlantic salmon. Anim Behav 58(5):933–942

    CAS  PubMed  Google Scholar 

  • Alimuddin YG, Kiron V, Satoh S, Takeuchi T (2007) Expression of masu salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar Biotechnol (NY) 9:92–100

    CAS  Google Scholar 

  • Alzaid A, Kim JH, Devlin RH, Martin SAM, Macqueen DJ (2018) Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. J Exp Biol 221(Pt 13), pii: jeb173146

    Google Scholar 

  • Avey SR, Ojehomon M, Dawson JF, Gillis TE (2018) How the expression of green fluorescent protein and human cardiac actin in the heart influences cardiac function and aerobic performance in zebrafish Danio rerio. J Fish Biol 92:177–189

    CAS  PubMed  Google Scholar 

  • Bagis H, Aktoprakligil D, Mercan HO, Yurdusev N, Turgut G, Sekmen S, Arat S, Cetin S (2006) Stable transmission and transcription of newfoundland ocean pout type III fish antifreeze protein (AFP) gene in transgenic mice and hypothermic storage of transgenic ovary and testis. Mol Reprod Dev 73:1404–1411

    CAS  PubMed  Google Scholar 

  • Beadle GW (1980) The ancestry of corn. Sci Am 242:112–119. Accessed online at https://www.jstor.org/stable/pdf/24966237.pdf

  • Bessey C, Devlin RH, Liley NR, Biagi CA (2004) Reproductive performance of growth-enhanced transgenic coho salmon. Trans Am Fish Soc 133:1205–1220

    Google Scholar 

  • Bierbach D, Girndt A, Hamfler S, Klein M, Mücksch F, Penshorn M, Schwinn M, Zimmer C, Schlupp I, Streit B, Plath M (2011) Male fish use prior knowledge about rivals to adjust their mate choice. Biol Lett 7:349–351

    PubMed  PubMed Central  Google Scholar 

  • Cao M, Chen J, Peng W, Wang Y, Liao L, Li Y, Trudeau VL, Zhu Z, Hu W (2014) Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L. Gen Comp Endocrinol 195:47–57

    CAS  PubMed  Google Scholar 

  • CBC (2019) GM salmon approved for commercial production in P.E.I, AquaBounty announces. Online resources accessed at https://www.cbc.ca/news/canada/prince-edward-island/pei-aquabounty-salmon-commercial-production-1.5080914

  • Chaimongkol A (2009) Disruption of embryonic development in common carp, Cyprinus Carpio, and channel catfish, Ictalurus Punctatus, via knock down of BMP2 gene for repressible transgenic sterilization. Ph.D. Dissertation, Auburn University, Auburn, Alabama, USA

    Google Scholar 

  • Chatakondi NG (1995) Evaluation of transgenic common carp, Cyprinus carpio, containing rainbow trout growth hormone in ponds. Ph.D. Dissertation, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Chatakondi N, Ramboux AC, Nichols A, Hayat M, Duncan PL, Chen TT, Powers DA, Dunham RA (1994) The effect of rainbow trout growth hormone gene on the morphology, dressing percentage and condition factor in the common carp, Cyprinus carpio. Proceedings V World Congress of Genetics and Applied Livestock Production 17:481–484

    Google Scholar 

  • Chen Z, Devlin RH, Farrell AP (2015) Upper thermal tolerance of wild-type, domesticated and growth hormone-transgenic coho salmon Oncorhynchus kisutch. J Fish Biol 87:763–773

    CAS  PubMed  Google Scholar 

  • Chen J, Cao M, Zhang A, Shi M, Tao B, Li Y, Wang Y, Zhu Z, Trudeau VL, Hu W (2018) Growth hormone overexpression disrupts reproductive status through actions on leptin. Front Endocrinol (Lausanne) 9:131

    Google Scholar 

  • Cheng Q, Su B, Qin Z, Weng CC, Yin F, Zhou Y, Fobes M, Perera DA, Shang M, Soller F, Shi Z, Davis A, Dunham RA (2014) Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res 23:729–742

    CAS  PubMed  Google Scholar 

  • Chiou PP, Chen MJ, Lin CM, Khoo J, Larson J, Holt R, Leong JA, Thorgarrd G, Chen TT (2014) Production of homozygous transgenic rainbow trout with enhanced disease resistance. Mar Biotechnol (NY) 16:299–308

    CAS  Google Scholar 

  • Cook JT, McNiven MA, Richardson GF, Sutterlin AM (2000) Growth rate, body composition and feed digestibility/conversion of growth-enhanced transgenic Atlantic salmon (Salmo salar). Aquaculture 188:15–32

    Google Scholar 

  • Crossin GT, Sundström LF, Vandersteen WE, Devlin RH (2015) Early life-history consequences of growth-hormone transgenesis in rainbow trout reared in stream ecosystem mesocosms. PLoS One 10:e0120173

    PubMed  PubMed Central  Google Scholar 

  • Dalmolin C, Almeida DV, Figueiredo MA, Marins LF (2015) Food intake and appetite control in a GH-transgenic zebrafish. Fish Physiol Biochem 41(5):1131–1141

    CAS  PubMed  Google Scholar 

  • Devlin RH (1997) Transgenic Salmonids. In: Houdebine LM (ed) Transgenic animals: generation and use. Harwood Academic Publishers, Amsterdam, pp 105–117

    Google Scholar 

  • Devlin RH, Yesaki TY, Donaldson EM, Du SJ, Hew CL (1995a) Production of germline transgenic Pacific salmonids with dramatically increased growth performance. Can J Fish Aquat Sci 52:1376–1384

    Google Scholar 

  • Devlin RH, Yesaki TY, Donaldson EM, Hew CL (1995b) Transmission and phenotypic effects of an antifreeze/GH gene construct in coho salmon (Oncorhynchus kisutch). Aquaculture 137:161–169

    CAS  Google Scholar 

  • Devlin RH, Biagi CA, Yesaki TY, Smailus DE, Byatt JC (2001) Growth of domesticated transgenic fish. Nature 409:781–782

    CAS  PubMed  Google Scholar 

  • Devlin RH, D’Andrade M, Uh M, Biagi CA (2004) Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions. Proc Natl Acad Sci U S A 101(25):9303–9308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, Goh B (2009) Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proc Natl Acad Sci U S A 106:3047–3052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin RH, Sakhrani D, White S, Overturf K (2013) Effects of domestication and growth hormone transgenesis on mRNA profiles in rainbow trout (Oncorhynchus mykiss). J Anim Sci 91(11):5247–5258

    CAS  PubMed  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  PubMed  Google Scholar 

  • DFO (2013) Summary of the environmental and indirect human health risk assessment of AquAdvantage® Salmon. DFO Can Sci Advis Sec Sci Resp 2013/023. Accessed online at https://waves-vagues.dfo-mpo.gc.ca/Library/361091.pdf

  • Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology (N Y) 10:176–181

    CAS  Google Scholar 

  • Dunham RA (2004) Aquaculture and fisheries biotechnology: genetic approaches. CABI Publishing, Cambridge, MA, p 372

    Google Scholar 

  • Dunham RA (2011) Aquaculture and fisheries biotechnology: genetics approaches, 2nd edn. CABI, Cambridge, MA, p 504

    Google Scholar 

  • Dunham RA (2019) Chapter 7: Genetics. In: Lucas JS, Southgate PC, Tucker CS (eds) Aquaculture: farming aquatic animals and plants, 3rd edn. Wiley-Blackwell/Wiley, pp 127–156

    Google Scholar 

  • Dunham RA, Devlin R (1998) Comparison of traditional breeding and transgenesis in farmed fish with implications for growth enhancement and fitness. In: Murray JD, Anderson GB, Oberbauer AM, McGloughlin MN (eds) Transgenic Animals in Agriculture. CAB International, Wallingford, pp 209–229

    Google Scholar 

  • Dunham RA, Liu Z (2002) Gene mapping, isolation and genetic improvement in catfish. In: Shimizu N, Aoki T, Hirono I, Takashima F (eds) Aquatic genomics: steps toward a great future. Springer, Tokyo, pp 45–60

    Google Scholar 

  • Dunham RA, Ramboux AC, Duncan PL, Hayat M, Chen TT, Lin CM, Kight K, Gonzalez-Villasenor I, Powers DA (1992a) Transfer, expression, and inheritance of salmonid growth hormone genes in channel catfish, Ictalurus punctatus, and effects on performance traits. Mol Mar Biol Biotechnol 1:380–389

    CAS  PubMed  Google Scholar 

  • Dunham RA, Turner CJ, Reeves WC (1992b) Introgression of Florida largemouth bass genome into native populations in Alabama Public Lakes. N Am J Fish Manag 12:494–498

    Google Scholar 

  • Dunham RA, Chitmanat C, Nichols A, Argue B, Powers DA, Chen TT (1999) Predator avoidance of transgenic channel catfish containing salmonid growth hormone genes. Mar Biotechnol (NY) 1:545–551

    CAS  Google Scholar 

  • Dunham RA, Chatakondi N, Nichols A, Chen TT, Powers DA, Kucuktas H (2002a) Survival of F2 transgenic common carp (Cyprinus carpio) containing pRSVrtGH1 complementary DNA when subjected to low dissolved oxygen. Mar Biotechnol (NY) 4:323–327

    CAS  Google Scholar 

  • Dunham RA, Chatakondi N, Nichols AJ, Kucuktas H, Chen TT, Powers DA, Weete JD, Cummins K, Lovell RT (2002b) Effect of rainbow trout growth hormone complementary DNA on body shape, carcass yield, and carcass composition of F1 and F2 transgenic common carp (Cyprinus carpio). Mar Biotechnol (NY) 4:604–611

    CAS  Google Scholar 

  • Dunham RA, Kucuktas H, Liu Z, Keefer L, Spencer M, Robinson S (2002c) Biochemical genetics of brook trout in Georgia: management implications. Southeastern Association of Fish and Wildlife Agencies 55:63–80

    Google Scholar 

  • Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H (2002d) Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol (NY) 4:338–344

    CAS  Google Scholar 

  • Ebert KM, Low MJ, Overstrom EW, Buonomo FC, Baile CA, Roberts TM, Lee A, Mandel G, Goodman RH (1988) A Moloney MLV-rat somatotropin fusion gene produces biologically active somatotropin in a transgenic pig. Mol Endocrinol 2:277–283

    CAS  PubMed  Google Scholar 

  • Erkinaro J, Niemelä E, Vähä J, Primmer CR, Brørs S, Hassinena E (2010) Distribution and biological characteristics of escaped farmed salmon in a major subarctic wild salmon river: implications for monitoring. Can J Fish Aquat Sci 67:130–142

    CAS  Google Scholar 

  • FAO/WHO (2004) Safety assessment of foods derived from genetically modified animals, including Fish. FAO Food and Nutrition Paper 79. Report of the FAO/WHO Expert Consultation Rome, 17–21 November 2003.World Health Organization, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Federal Register (2018) National Bioengineered Food Disclosure Standard, 83: 65814–65876

    Google Scholar 

  • Fitzpatrick JL, Akbarashandiz H, Sakhrani D, Biagi CA, Pitcher TE, Devlin RH (2011) Cultured growth hormone transgenic salmon are reproductively out-competed by wild-reared salmon in semi-natural mating arenas. Aquaculture 312:185–191

    CAS  Google Scholar 

  • Fletcher GL, Shears MA, King MJ, Davies PL, Hew CL (1988) Evidence for antifreeze protein gene transfer in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 45:352–357

    CAS  Google Scholar 

  • Forsgren E (1992) Predation risk affects mate choice in a gobiid fish. Am Nat 140:1041–1049

    Google Scholar 

  • Fortier E, Belote JM (2000) Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26(4):240–244

    CAS  PubMed  Google Scholar 

  • Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N (2007) Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272:291–295

    Google Scholar 

  • Ganga R, Tibbetts SM, Wall CL, Plouffe DA, Bryenton MD, Peters AR, Runighan CD, Buchanan JT, Lall SP (2015) Influence of feeding a high plant protein diet on growth and nutrient utilization to combined ‘all-fish’ growth-hormone transgenic diploid and triploid Atlantic salmon (Salmo salar L.). Aquaculture 446:272–282

    CAS  Google Scholar 

  • Gao FY, Qu L, Yu SG, Ye X, Tian YY, Zhang LL, Bai JJ, Lu M (2012) Identification and expression analysis of three c-type lysozymes in Oreochromis aureus. Fish Shellfish Immunol 32:779–788

    CAS  PubMed  Google Scholar 

  • Glover KA, Solberg MF, McGinnity P, Hindar K, Verspoor E, Coulson MW, Hansen MM, Araki H, Skaala Ø, Svåsand T (2017) Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish Fish 18:890–927

    Google Scholar 

  • Godin JG, Dugatkin LA (1996) Female mating preference for bold males in the guppy, Poecilia reticulata. Proc Natl Acad Sci U S A 93:10262–10267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Liang L (2013) Comparison of testis tissue construction and development of the genetically modified carp and the carp. J Northeast Agric Univ 44:95–100. (in Chinese with English abstract)

    Google Scholar 

  • Higgs DA, Sutton JN, Kim H, Oakes JD, Smith J, Biagi C, Rowshandeli M, Devlin RH (2009) Influence of dietary concentrations of protein, lipid and carbohydrate on growth, protein and energy utilization, body composition, and plasma titres of growth hormone and insulin-like growth factor-1 in non-transgenic and growth hormone transgenic coho salmon Oncorhynchus kisutch Walbaum. Aquaculture 286:127–137

    CAS  Google Scholar 

  • Hill JA, Kiessling A, Devlin RH (2000) Coho salmon (Oncorhynchus kisutch) transgenic for a growth hormone gene construct exhibit increased rates of muscle hyperplasia and detectable levels of differential gene expression. Can J Fish Aquat Sci 57:939–950

    CAS  Google Scholar 

  • Hobbs RS, Fletcher GL (2008) Tissue specific expression of antifreeze protein and growth hormone transgenes driven by the ocean pout (Macrozoarces americanus) antifreeze protein OP5a gene promoter in Atlantic salmon (Salmo salar). Transgenic Res 17:33–45

    CAS  PubMed  Google Scholar 

  • Hollo T, Watson BM, Johnston SV, Devlin RH (2017) Behaviour of growth hormone transgenic coho salmon Oncorhynchus kisutch in marine mesocosms assessed by acoustic tag telemetry. J Fish Biol 90:1660–1667

    CAS  PubMed  Google Scholar 

  • Howard RD, DeWoody JA, Muir WM (2004) Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish. Proc Natl Acad Sci U S A 101:2934–2938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Li S, Tang B, Wang Y, Lin H, Liu X, Zou J, Zhu Z (2007a) Antisense for gonadotropin-releasing hormone reduces gonadotropin synthesis and gonadal development in transgenic common carp (Cyprinus carpio). Aquaculture 271:498–506

    CAS  Google Scholar 

  • Hu W, Wang Y, Zhu Z (2007b) Progress in the evaluation of transgenic fish for possible ecological risk and its containment strategies. Sci China C Life Sci 50(5):573–579

    CAS  PubMed  Google Scholar 

  • Hu SY, Liao CH, Lin YP, Li YH, Gong HY, Lin GH, Kawakami K, Yang TH, Wu JL (2011) Zebrafish eggs used as bioreactors for the production of bioactive tilapia insulin-like growth factors. Transgenic Res 20:73–83

    PubMed  Google Scholar 

  • Hwang G, Müller F, Rahman MA, Williams DW, Murdock PJ, Pasi KJ, Goldspink G, Farahmand H, Maclean N (2004) Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos. Mar Biotechnol (NY) 6:485–492

    CAS  Google Scholar 

  • IntraFish Media (2017) Accessed online at https://www.intrafish.com/finance/1281270/aquabounty-acquires-us-land-based-farmer-bell-fish

  • Jhingan E, Devlin RH, Iwama GK (2003) Disease resistance, stress response and effects of triploidy in growth hormone transgenic coho salmon. J Fish Biol 63:806–823

    Google Scholar 

  • Jiang XY, Huang CX, Zhong SS, Sun CF, Zou SM (2017) Transgenic overexpression of follistatin 2 in blunt snout bream results in increased muscle mass caused by hypertrophy. Aquaculture 468:442–450

    CAS  Google Scholar 

  • Johnston IA, de la Serrana DG, Devlin RH (2014) Muscle fibre size optimisation provides flexibility for energy budgeting in calorie-restricted coho salmon transgenic for growth hormone. J Exp Biol 217:3392–3395

    PubMed  PubMed Central  Google Scholar 

  • Kabeya N, Takeuchi Y, Yazawa R, Haga Y, Satoh S, Yoshizaki G (2016) Transgenic modification of the n-3 HUFA biosynthetic pathway in nibe croaker larvae: improved DPA (docosapentaenoic acid; 22:5n-3) production. Aquac Nutr 22:472–478

    CAS  Google Scholar 

  • Karlsson S, Diserud OH, Fiske P, Hindar K (2016) Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J Mar Sci 73:2488–2498

    Google Scholar 

  • Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH (2015) Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon2. Mol Cell Endocrinol 413:178–188

    CAS  PubMed  Google Scholar 

  • Kim JH, Chatchaiphan S, Crown MT, White SL, Devlin RH (2018) Effect of growth hormone overexpression on gastric evacuation rate in coho salmon. Fish Physiol Biochem 44:119–135

    CAS  PubMed  Google Scholar 

  • Knapp JR, Chen WY, Turner ND, Byers FM, Kopchick JJ (1994) Growth patterns and body composition of transgenic mice expressing mutated bovine somatotropin genes. J Anim Sci 72:2812–2819

    CAS  PubMed  Google Scholar 

  • Ledford H (2015) Salmon approval heralds rethink of transgenic animals. Nature 527:417–418

    CAS  PubMed  Google Scholar 

  • Lee CG, Farrell AP, Lotto A, MacNutt MJ, Hinch SG, Healey MC (2003) The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks. J Exp Biol 206(Pt 18):3239–3251

    CAS  PubMed  Google Scholar 

  • Leggatt RA, Raven PA, Mommsen TP, Sakhrani D, Higgs D, Devlin RH (2009) Growth hormone transgenesis influences carbohydrate, lipid and protein metabolism capacity for energy production in coho salmon (Oncorhynchus kisutch). Comp Biochem Physiol B Biochem Mol Biol 154(1):121–133

    CAS  PubMed  Google Scholar 

  • Leggatt RA, Biagi CA, Smith JL, Devlin RH (2012) Growth of growth hormone transgenic coho salmon Oncorhynchus kisutch is influenced by construct promoter type and family line. Aquaculture 356–357:193–199

    Google Scholar 

  • Leggatt RA, Biagi CA, Sakhrani D, Dominelli D, Eliason EJ, Farrell AP, Devlin RH (2017a) Fitness component assessments of wild-type and growth hormone transgenic coho salmon reared in seawater mesocosms. Aquaculture 473:31–42

    CAS  Google Scholar 

  • Leggatt RA, Sundström LF, Woodward K, Devlin RH (2017b) Growth-enhanced transgenic coho salmon (Oncorhynchus kisutch) strains have varied success in simulated streams: implications for risk assessment. PLoS One 12(1):e0169991

    PubMed  PubMed Central  Google Scholar 

  • Li H (2016) Repressible transgenic sterilization in channel catfish, Ictalurus punctatus, by knockdown of primordial germ cell genes. Ph.D. Dissertation, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Li D, Hu W, Wang Y, Zhu Z, Fu C (2009) Reduced swimming abilities in fast-growing transgenic common carp Cyprinus carpio associated with their morphological variations. J Fish Biol 74:186–197

    CAS  PubMed  Google Scholar 

  • Li H, Su B, Qin G, Ye Z, Alsaqufi A, Perera DA, Shang M, Odin R, Vo K, Drescher D, Robinson D, Zhang D, Abass N, Dunham RA (2017) Salt sensitive Tet-off-like systems to knockdown primordial germ cell genes for repressible transgenic sterilization in channel catfish, Ictalurus punctatus. Mar Drugs 15(6):155

    PubMed Central  Google Scholar 

  • Li H, Su B, Qin G, Ye Z, Elaswad A, Alsaqufi A, Perera DA, Qin Z, Odin R, Vo K, Drescher D, Robinson D, Dong S, Zhang D, Shang M, Abass N, Das SK, Bangs M, Dunham RA (2018) Repressible transgenic sterilization in channel catfish, Ictalurus punctatus, by knockdown of primordial germ cell genes with copper-sensitive constructs. Mar Biotechnol (NY) 20:324–342

    CAS  Google Scholar 

  • Lian H, Hu W, Huang R, Du F, Liao L, Zhu Z, Wang Y (2013) Transgenic common carp do not have the ability to expand populations. PLoS One 8:e65506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Xu L, Liang L, Liu J, Chang Y (2011) Effects of semi-starvation on the growth and gonad development of transgenic carps. J Jilin Agric Univ 33:450–454, 463 (in Chinese with English abstract)

    Google Scholar 

  • Liu S, Vallejo RL, Evenhuis JP, Martin KE, Hamilton A, Gao G et al (2018) Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population. Front Genet 9:286

    PubMed  PubMed Central  Google Scholar 

  • Lo JH, Lin CM, Chen MJ, Chen TT (2014) Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genomics 15:887

    PubMed  PubMed Central  Google Scholar 

  • Maclean N, Talwar S (1984) Injection of cloned genes into rainbow trout eggs. J Embroyl Exp Morphol 82(Suppl):187

    Google Scholar 

  • Maclean N, Penman D, Talwar S (1987) Introduction of novel genes into rainbow trout. In: Tiews K (ed) EIFAC/FAO symposium on selection, Hybridization and Genetic Engineering in Aquaculture of Fish and Shellfish for Consumption and Stocking, vol II. Heenemann Verlagsgesellschaft mbH, Berlin, pp 325–334

    Google Scholar 

  • Mao W, Wang Y, Wang W, Wu B, Feng J, Zhu Z (2004) Enhanced resistance to Aeromonas hydrophila infection and enhanced phagocytic activities in human lactoferrin-transgenic grass carp (Ctenopharyngodon idellus). Aquaculture 242:93–103

    CAS  Google Scholar 

  • Marnis H, Iswanto B, Imron FS, Dewi RRSPS (2016) The ability of fast-growing transgenic African catfish (Clarias gariepinus) on predator avoidance. Indones Aquac J 11:9–13

    Google Scholar 

  • Martínez R, Juncal J, Zaldívar C, Arenal A, Guillén I, Morera V, Carrillo O, Estrada M, Morales A, Estrada MP (2000) Growth efficiency in transgenic tilapia (Oreochromis sp.) carrying a single copy of an homologous cDNA growth hormone. Biochem Biophys Res Commun 267:466–472

    PubMed  Google Scholar 

  • Moav R, Wohlfarth GW (1974) Magnification through competition of genetic differences in yield capacity in carp. Heredity (Edinb) 33:181–202

    CAS  Google Scholar 

  • Moreau DT, Conway C, Fleming IA (2011) Reproductive performance of alternative male phenotypes of growth hormone transgenic Atlantic salmon (Salmo salar). Evol Appl 4:736–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Devlin RH (1999) Transgene and host growth hormone gene expression in pituitary and nonpituitary tissues of normal and growth hormone transgenic salmon. Mol Cell Endocrinol 149:129–139

    CAS  PubMed  Google Scholar 

  • Mori T, Hiraka I, Kurata Y, Kawachi H, Mano N, Devlin RH, Nagoya H, Araki K (2007) Changes in hepatic gene expression related to innate immunity, growth and iron metabolism in GH-transgenic amago salmon (Oncorhynchus masou) by cDNA subtraction and microarray analysis, and serum lysozyme activity. Gen Comp Endocrinol 151:42–54

    CAS  PubMed  Google Scholar 

  • Morita T, Yoshizaki G, Kobayashi M, Takeuchi T (2003) Production of biologically-active recombinant goldfish gonadotropins in transgenic rainbow trout. Fish Physiol Biochem 28:473–474

    CAS  Google Scholar 

  • Muir WM, Howard RD (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis. Proc Natl Acad Sci U S A 96:13853–13856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muir WM, Howard RD (2001) Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes). Am Nat 158:1–16

    CAS  PubMed  Google Scholar 

  • Muir WM, Howard RD (2002) Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Res 11:101–114

    CAS  PubMed  Google Scholar 

  • Nam YK, Noh JK, Cho YS, Cho HJ, Cho KN, Kim CG, Kim DS (2001) Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res10:353–362

    Google Scholar 

  • Nam YK, Park I, Kim DS (2004) Triploid hybridization of fast-growing transgenic mud loach Misgurnus mizolepis male to cyprinid loach Misgurnus anguillicaudatus female: the first performance study on growth and reproduction of transgenic polyploid hybrid fish. Aquaculture 231:559–572

    Google Scholar 

  • Nancarrow CD, Marshall JT, Clarkson JL, Murray JD, Millard RM, Shanahan CM, Wynn PC, Ward KA (1991) Expression and physiology of performance regulating genes in transgenic sheep. J Reprod Fertil Suppl 43:277–291

    CAS  PubMed  Google Scholar 

  • Norgren KG, Dunham RA, Smitherman RO, Reeves WR (1986) Biochemical genetics of largemouth bass populations in Alabama. Proc Annu Conf Southeast Assoc Fish Wildl Agencies 40:194–205

    Google Scholar 

  • NRC (National Research Council) (2004) Biological confinement of genetically engineered organisms. National Academies Press, Washington, DC, p 255

    Google Scholar 

  • Ostenfeld TH, McLean E, Devlin RH (1998) Transgenesis changes body and head shape in Pacific salmon. J Fish Biol 52:850–854

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang SC, Wang HP, Li KY, Zhu ZY, Kang JX, Sun YH (2014) Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. Mar Biotechnol (NY) 16:580–593

    CAS  Google Scholar 

  • Pennington KM, Kapuscinski AR (2011) Predation and food limitation influence fitness traits of growth-enhanced transgenic and wild-type fish. Trans Am Fish Soc 140:221–234

    Google Scholar 

  • Pohajdak B, Mansour M, Hrytsenko O, Conlon JM, Dymond LC, Wright JR Jr (2004) Production of transgenic tilapia with Brockmann bodies secreting [desThrB30] human insulin. Transgenic Res 13:313–323

    CAS  PubMed  Google Scholar 

  • Pomp D, Nancarrow CD, Ward KA, Murray JD (1992) Growth, feed-efficiency and body-composition of transgenic mice expressing a sheep metallothionein 1a-sheep growth hormone fusion gene. Livest Prod Sci 31:335–350

    Google Scholar 

  • Pursel VG, Hammer RE, Bolt DJ, Palmiter RD, Brinster RL (1990) Integration, expression and germ-line transmission of growth-related genes in pigs. J Reprod Fertil Suppl 41:77–87

    CAS  PubMed  Google Scholar 

  • Qin Z, Li Y, Su B, Cheng Q, Ye Z, Perera DA, Fobes M, Shang M, Dunham RA (2016) Editing of the luteinizing hormone gene to sterilize channel catfish, Ictalurus punctatus, using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol (NY) 18:255–263

    CAS  Google Scholar 

  • Rahman MA, Maclean N (1999) Growth performance of transgenic tilapia containing an exogenous piscine growth hormone gene. Aquaculture 173:333–346

    CAS  Google Scholar 

  • Rahman MA, Mak R, Ayad H, Smith A, Maclean N (1998) Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 7:357–369

    CAS  PubMed  Google Scholar 

  • Rahman MA, Ronyai A, Engidaw BZ, Jauncey K, Hwang GL, Smith A, Roderick E, Penman D, Varadi L, Maclean N (2001) Growth and nutritional trials on transgenic Nile tilapia containing an exogenous fish growth hormone gene. J Fish Biol 59:62–78

    CAS  Google Scholar 

  • Raz E (2004) Guidance of primordial germ cell migration. Curr Opin Cell Biol 16:169–173

    CAS  PubMed  Google Scholar 

  • Rise ML, Douglas SE, Sakhrani D, Williams J, Ewart KV, Rise M, Davidson WS, Koop BF, Devlin RH (2006) Multiple microarray platforms utilized for hepatic gene expression profiling of GH transgenic coho salmon with and without ration restriction. J Mol Endocrinol 37:259–282

    CAS  PubMed  Google Scholar 

  • Roberts SB, McCauley LA, Devlin RH, Goetz FW (2004) Transgenic salmon overexpressing growth hormone exhibit decreased myostatin transcript and protein expression. J Exp Biol 207:3741–3748

    CAS  PubMed  Google Scholar 

  • Sarmasik A, Warr G, Chen TT (2002) Production of transgenic medaka with increased resistance to bacterial pathogens. Mar Biotechnol (NY) 4:310–322

    CAS  Google Scholar 

  • Scholander PF, van Dam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 49:5–24

    CAS  Google Scholar 

  • Shears MA, Fletcher GL, Hew CL, Gauthier S, Davies PL (1991) Transfer, expression and stable inheritance of antifreeze protein genes in Atlantic salmon (Salmo salar). Marine Mol Biol Biotech 1:58–63

    CAS  Google Scholar 

  • Silva AC, Almeida DV, Nornberg BF, Figueiredo MA, Romano LA, Marins LF (2015) Effects of double transgenesis of somatotrophic axis (GH/GHR) on skeletal muscle growth of zebrafish (Danio rerio). Zebrafish 12:408–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons M, Mickett K, Kucuktas H, Li P, Dunham R, Liu Z (2006) Comparison of domestic and wild channel catfish (Ictalurus punctatus) populations provides no evidence for genetic impact. Aquaculture 252:133–146

    Google Scholar 

  • Stevens ED, Devlin RH (2000a) Intestinal morphology in growth hormone transgenic coho salmon. J Fish Biol 56:191–195

    Google Scholar 

  • Stevens ED, Devlin RH (2000b) Gill morphometry in growth hormone transgenic Pacific coho salmon, Oncorhynchus kisutch, differs markedly from that in GH transgenic Atlantic salmon. Environ Biol Fish 58:113–117

    Google Scholar 

  • Stevens ED, Sutterlin A (1999) Gill morphometry in growth hormone transgenic Atlantic salmon. Environ Biol Fish 54:405–411

    Google Scholar 

  • Su B (2012) Reproductive confinement of common carp, Cyprinus carpio, and channel catfish, Ictalurus punctatus, via transgenic sterilization. Ph.D. Dissertation, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Su B, Peatman E, Shang M, Thresher R, Grewe P, Patil JG, Pinkert CA, Irwin MH, Li C, Perera DA, Duncan PL, Fobes M, Dunham RA (2014) Expression and knockdown of primordial germ cell genes, vasa, nanos and dead end in common carp (Cyprinus carpio) embryos for transgenic sterilization and reduced sexual maturity. Aquaculture 420-421(Suppl 1):S72–S84

    CAS  Google Scholar 

  • Su B, Shang M, Grewe PM, Patil JG, Peatman E, Perera DA, Cheng Q, Li C, Weng CC, Li P, Liu Z, Dunham RA (2015a) Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: potential for reversible transgenic sterilization. Theriogenology 84:1499–1512

    CAS  PubMed  Google Scholar 

  • Su B, Shang M, Li C, Perera DA, Pinkert CA, Irwin MH, Peatman E, Grewe P, Patil JG, Dunham RA (2015b) Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry. Transgenic Res 24:333–352

    CAS  PubMed  Google Scholar 

  • Sun C, Qu L, Ye X, Dong J, Tian Y, Lu M (2017) Establishing a zebrafish transgenic line expressing tilapia lysozyme with enhanced antibacterial activity. Aquaculture Res 48:760–766

    CAS  Google Scholar 

  • Sundström LF, Lõhmus M, Johnsson JI, Devlin RH (2004) Growth hormone transgenic salmon pay for growth potential with increased predation mortality. Proc Biol Sci 271(Suppl 5):S350–S352

    PubMed  PubMed Central  Google Scholar 

  • Sundström LF, Löhmus M, Devlin RH (2016) Gene–environment interactions influence feeding and anti-predator behavior in wild and transgenic coho salmon. Ecol Appl 26:67–76

    PubMed  Google Scholar 

  • Tang Y, Lin CM, Chen TT, Kawauchi H, Dunham RA, Powers DA (1993) Structure of the channel catfish (Ictalurus punctatus) growth hormone gene and its evolutionary implications. Mol Mar Biol Biotechnol 2:198–206

    CAS  PubMed  Google Scholar 

  • Teem JL, Gutierrez JB (2014) Combining the Trojan Y chromosome and daughterless carp eradication strategies. Biol Invasions 16:1231–1240

    Google Scholar 

  • Teem JL, Gutierrez JB, Parshad RD (2014) A comparison of the Trojan Y chromosome and daughterless carp eradication strategies. Biol Invasions 16:1217–1230

    Google Scholar 

  • Templeton CS (2005) Disruption of embryonic development in channel catfish, Ictalurus punctatus, using “sterile feral” gene constructs. Ms. Thesis, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Thresher RE (2008) Autocidal technology for the control of invasive fish. Fisheries 33:114–121

    Google Scholar 

  • Thresher RE, Grewe P, Patil J, Hinds L (2005) Genetic control of sex ratio in animal populations. Australian Patent Number 2001291520, Commonwealth Scientific and Industrial Research Organisation

    Google Scholar 

  • Thresher R, Grewe P, Patil JG, Whyard S, Templeton CM, Chaimongol A, Hardy CM, Hinds LA, Dunham R (2009) Development of repressible sterility to prevent the establishment of feral populations of exotic and genetically modified animals. Aquaculture 290:104–109

    Google Scholar 

  • Thresher RE, Hayes K, Bax NJ, Teem J, Benfey TJ, Gould F (2013) Genetic control of invasive fish: technological options and its role in integrated pest management. Biol Invasions 16:1201–1216

    Google Scholar 

  • U.S. Food and Drug Administration (2015) FDA had determined that the AquAdvantage Salmon is as safe to eat as non-GE salmon. Accessed online at https://web.archive.org/web/20151121055636/http://www.fda.gov/downloads/ForConsumers/ConsumerUpdates/UCM473578.pdf

  • Uzbekova S, Chyb J, Ferrière F, Bailhache T, Prunet P, Alestrom P, Breton B (2000) Transgenic rainbow trout expressed sGnRH-antisense RNA under the control of sGnRH promoter of Atlantic salmon. J Mol Endocrinol 25:337–350

    CAS  PubMed  Google Scholar 

  • VOX (2014) Here’s what 9,000 years of breeding has done to corn, peaches, and other crops. Accessed online at https://www.vox.com/2014/10/15/6982053/selective-breeding-farming-evolution-corn-watermelon-peaches

  • Waltz E (2017) First genetically engineered salmon sold in Canada. Nature 548:148

    CAS  PubMed  Google Scholar 

  • Wang R, Zhang P, Gong Z, Hew CL (1995) Expression of the antifreeze protein gene in transgenic goldfish (Carassius auratus) and its implication in cold adaptation. Mol Mar Biol Biotechnol 4:20–26

    CAS  PubMed  Google Scholar 

  • Wang WB, Wang YP, Hu W, Li AH, Cai TZ, Zhu ZY, Wang JG (2006) Effects of the “all-fish” growth hormone transgene expression on non-specific immune functions of common carp, Cyprinus carpio L. Aquaculture 259:81–87

    CAS  Google Scholar 

  • Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Jin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z (2019) GWAS analysis indicated importance of NF-κB signaling pathway in host resistance against motile aeromonas septicemia disease in catfish. Mar Biotechnol (NY) 21(3):335–347

    CAS  Google Scholar 

  • Weir LK, Grant JWA (2005) Effects of aquaculture on wild fish populations: a synthesis of data. Environ Rev 13:145–168

    Google Scholar 

  • Wieghart M, Hoover JL, McGrane MM, Hanson RW, Rottman FM, Holtzman SH, Wagner TE, Pinkert CA (1990) Production of transgenic pigs harbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fusion gene. J Reprod Fertil Suppl 41:89–96

    CAS  PubMed  Google Scholar 

  • Wikipedia (2019) GloFish. https://en.wikipedia.org/wiki/GloFish

  • Wong TT, Collodi P (2013) Inducible sterilization of zebrafish by disruption of primordial germ cell migration. PLoS One 8:e68455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AC, Van Eenennaam AL (2008) Transgenic approaches for the reproductive containment of genetically engineered fish. Aquaculture 275:1–12

    Google Scholar 

  • Wringe BF, Jeffery NW, Stanley RRE, Hamilton LC, Anderson EC, Fleming IA, Grant C, Dempson JB, Veinott G, Duffy SJ, Bradbury IR (2018) Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Commun Biol 1:108

    PubMed  PubMed Central  Google Scholar 

  • Wu JL, Hu SY, Her GM (2010). Infertility control of genetically modified fish. United States Patent Number US 8383880 B2

    Google Scholar 

  • Xu Q, Feng CY, Hori TS, Plouffe DA, Buchanan JT, Rise ML (2013) Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). Comp Biochem Physiol Part D Genomics Proteomics 8(4):317–333

    CAS  PubMed  Google Scholar 

  • Yan X, Zhang X, Liu C, Sun X, Liang L, Cao D, Li C, Ge Y (2011) Introgressive hybridization of exogenous gene by micro-injection in carp (Cyprinus carpio L.) breeding. J Fish Sci China 18:275–282. (In Chinese with English Abstract)

    CAS  Google Scholar 

  • Yan H, Liang L, Chang Y, Sun B, Su B (2017) Effects of inheritance and temperature on sex determination and differentiation related genes and sex ratio in fish: a review. J Dalian Ocean Univ 32:111–118. (In Chinese with English Abstract)

    Google Scholar 

  • Yazawa R, Hirono I, Aoki T (2006) Transgenic zebrafish expressing chicken lysozyme show resistance against bacterial diseases. Transgenic Res 15:385–391

    CAS  PubMed  Google Scholar 

  • Youssef N (2017) Comparisons among channel catfish Ictalurus punctatus, blue catfish, channel ♀ × I. furcatus blue ♂ hybrid catfish and Transgenic Channel catfish for growth, cold and salinity tolerance. Ph.D. dissertation, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Zhang D (2016) Transgenic disruption of aromatase using the daughterless construct to Alter sex ratio in common carp, Cyprinus carpio. M.S. Thesis, Auburn University, Auburn, AL, USA

    Google Scholar 

  • Zhang PJ, Hayat M, Joyce C, Gonzalez-Villaseñor LI, Lin CM, Dunham RA, Chen TT, Powers DA (1990) Gene transfer, expression and inheritance of pRSV-rainbow trout-GH cDNA in the common carp, Cyprinus carpio (Linnaeus). Mol Reprod Dev 25:3–13

    CAS  PubMed  Google Scholar 

  • Zhang L, Sun C, Ye X, Zou S, Lu M, Liu Z, Tian Y (2014) Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter. Fish Physiol Biochem 40:221–233

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen J, Cui X, Luo D, Xia H, Dai J, Zhu Z, Hu W (2015) A controllable on-off strategy for the reproductive containment of fish. Sci Rep 5:7614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong C, Song Y, Wang Y, Zhang T, Duan M, Li Y, Liao L, Zhu Z, Hu W (2013) Increased food intake in growth hormone-transgenic common carp (Cyprinus carpio L.) may be mediated by upregulating agouti-related protein (AgRP). Gen Comp Endocrinol 192:81–88

    CAS  PubMed  Google Scholar 

  • Zhu Z (1992) Chapter 6: Generation of fast growing transgenic fish: methods and mechanisms. In: Hew CL, Fletcher GL (eds) Transgenic fish. World Scientific Publishing, Singapore, pp 92–119. Accessed online at https://www.worldscientific.com/doi/abs/10.1142/9789814503600_0006

    Google Scholar 

  • Zhu Z, Li G, He L, Chen S (1985) Novel gene transfer into the fertilised eggs of goldfish (Carossius auratus L. 1758). J Appl Ichthyol 1:32–34

    Google Scholar 

  • Zhu TB, Zhang LH, Zhang TL, Wang YP, Hu W, Ringø E, Zhu ZY (2017) Effects of sustained predation by fast-growing transgenic common carp (Cyprinus carpio Linnaeus, 1758) on gastropods in artificial environments. J Appl Ichthyol 33:22–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex A. Dunham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunham, R.A., Su, B. (2020). Genetically Engineered Fish: Potential Impacts on Aquaculture, Biodiversity, and the Environment. In: Chaurasia, A., Hawksworth, D.L., Pessoa de Miranda, M. (eds) GMOs. Topics in Biodiversity and Conservation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-53183-6_11

Download citation

Publish with us

Policies and ethics