Skip to main content

Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems
  • 1066 Accesses

Abstract

Glutamate receptors are divided into two main groups: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). Modulation of iGluRs and mGluRs has potential for the treatment of psychiatric and neurological diseases such as depression, anxiety, schizophrenia, and Parkinson’s disease. Positron emission tomography (PET) might offer the possibility to visualize glutamate receptors and presents an interesting tool for studying these receptors under physiologic and pathologic conditions. MGluR PET radioligands reported till August 2019 are summarized, and also a summary of some of the most important prerequisites for CNS PET radioligands is provided. Emphasis is given to mGluR1 and mGluR5, the two receptor subtypes for which most advances in radioligand development and human studies have been made. In addition, recent research efforts toward the development of PET radioligands for other receptor subtypes more specifically, mGluR2/mGluR3 and mGluR4 are also outlined alongside their in vitro/in vivo properties and clinical applications where available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP688:

3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enonemethyl-oxime

AMPA:

2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)-propionic acid

BBB:

Blood-brain barrier

B max :

Maximal binding capacity

BPND:

Binding potential relative to the no displaceable compartment

Bq:

Becquerel

BSA:

Bovine serum albumin

CAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DV:

Distribution volume

EOB:

End of bombardment

EOS:

End of synthesis

Et3N:

Triethylamine

GPCR:

G-protein-coupled receptor

HBD:

Hydrogen bond donors

HPLC:

High-pressure liquid chromatography

i.v:

Intravenous

IC50:

Inhibition constant required for displacement of 50% of radioligand binding

ID:

Injected dose

IDnorm./g:

Injected dose normalized to body weight per tissue weight

iGluR:

Ionotropic glutamate receptor

K d :

Dissociation constant

K i :

Inhibition constant

ko:

Knockout

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

MeI:

Methyl iodide

M-FPEP:

2-methyl-6-(3-fluoro-phenylethynyl)-pyridine

mGluR:

Metabotropic glutamate receptor

mGluR5:

Metabotropic glutamate receptor subtype 5

min:

Minute(s)

M-MPEP:

2-methyl-6-((methoxyphenyl)ethynyl)-pyridine

MPO:

Multi-parameter optimization

MW:

Microwave

NAC:

N-acetylcysteine

NMDA:

N-methyl-d-aspartate

NMDAR:

N-methyl-d-aspartate receptor

p.i.:

Postinjection

PBS:

Phosphate-buffered saline

PET:

Positron emission tomography

P-gp:

P-glycoprotein

PI:

Phosphoinositol

PLC:

Phospholipase C

ROI:

Region of interest

RT:

Room temperature

SAR:

Structure-activity relationship

SUV:

Standard uptake value

TAC:

Time activity curve

TEMPO:

2,2,6,6-Tetramethylpiperidine-1-oxyl

THF:

Tetrahydrofuran

TM:

Transmembrane domain

TPSA:

Topological polar surface area

wt:

Wild-type

References

  • Abdallah CG, Hannestad J, Mason GF, Holmes SE, DellaGioia N, Sanacora G, Jiang L, Matuskey D, Satodiya R, Gasparini F et al (2017) Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: a multimodal imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging 2:449–456

    PubMed  PubMed Central  Google Scholar 

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor Mglur5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    Article  CAS  PubMed  Google Scholar 

  • Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, Gomez Mancilla B, Sovago J, Buck A, Hasler G (2013) Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A 110:737–742

    Article  CAS  PubMed  Google Scholar 

  • Akkus F, Treyer V, Ametamey SM, Johayem A, Buck A, Hasler G (2017) Metabotropic glutamate receptor 5 neuroimaging in schizophrenia. Schizophr Res 183:95–101

    Article  PubMed  Google Scholar 

  • Akkus F, Mihov Y, Treyer V, Ametamey SM, Johayem A, Senn S, Rosner S, Buck A, Hasler G (2018) Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl Psychiatry 8:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Ametamey SM, Kessler LJ, Honer M, Wyss MT, Buck A, Hintermann S, Auberson YP, Gasparini F, Schubiger PA (2006) Radiosynthesis and preclinical evaluation of C-11-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. J Nucl Med 47:698–705

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Treyer V, Streffer J, Wyss MT, Schmidt M, Blagoev M, Hintermann S, Auberson Y, Gasparini F, Fischer UC, Buck A (2007) Human PET studies of metabotropic glutamate receptor subtype 5 with C-11-ABP688. J Nucl Med 48:247–252

    CAS  PubMed  Google Scholar 

  • Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516

    Article  CAS  PubMed  Google Scholar 

  • Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, Cosford NDP, Varney MA (2003) In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [H-3]3-methoxy-5-(pyridin-2-ylethynyl)pyridine. Euro J Pharmacol 473:35–40

    Article  CAS  Google Scholar 

  • Andersson JD, Seneca N, Truong P, Wensbo D, Raboisson P, Farde L, Halldin C (2013) Palladium mediated (1)(1)C-cyanation and characterization in the non-human primate brain of the novel mGluR5 radioligand [(1)(1)C]AZD9272. Nucl Med Biol 40:547–553

    Article  CAS  PubMed  Google Scholar 

  • Andres JI, Alcazar J, Cid JM, De Angelis M, Iturrino L, Langlois X, Lavreysen H, Trabanco AA, Celen S, Bormans G (2012) Synthesis, evaluation, and radiolabeling of new potent positive allosteric modulators of the metabotropic glutamate receptor 2 as potential tracers for positron emission tomography imaging. J Med Chem 55:8685–8699

    Article  CAS  PubMed  Google Scholar 

  • Annoura H, Fukunaga A, Uesugi M, Tatsuoka T, Horikawa Y (1996) A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg Med Chem Lett 6:763–766

    Article  CAS  Google Scholar 

  • Augelli-Szafran CE, Schwarz RD (2003) Metabotropic glutamate receptors: agonists, antagonists and allosteric modulators. Ann Rep Med Chem 38:21–30

    CAS  Google Scholar 

  • Baumann CA, Mu L, Johannsen S, Honer M, Schubiger PA, Ametamey SM (2010) Structure-activity relationships of fluorinated (E)-3-((6-methylpyridin-2-yl)ethynyl)cyclohex-2-enone-O-methyloxime (ABP688) derivatives and the discovery of a high affinity analogue as a potential candidate for imaging metabotropic glutamate recepors subtype 5 (mGluR5) with positron emission tomography (PET). J Med Chem 53:4009–4017

    Article  CAS  PubMed  Google Scholar 

  • Bear MF (2005) Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav 4:393–398

    Article  CAS  PubMed  Google Scholar 

  • Belanger MJ, Krause SM, Ryan C, Sanabria-Bohorquez S, Li WP, Hamill TG, Burns HD (2008) Biodistribution and radiation dosimetry of [F-18]F-PEB in nonhuman primates. Nucl Med Commun 29:915–919

    Article  PubMed  Google Scholar 

  • Bertoglio D, Kosten L, Verhaeghe J, Thomae D, Wyffels L, Stroobants S, Wityak J, Dominguez C, Mrzljak L, Staelens S (2018) Longitudinal characterization of mGluR5 using (11)C-ABP688 PET imaging in the Q175 mouse model of Huntington disease. J Nucl Med 59:1722–1727

    Article  CAS  PubMed  Google Scholar 

  • Bettler B, Mulle C (1995) Review: neurotransmitter receptors. II AMPA and kainate receptors. Neuropharmacology 34:123–139

    Article  CAS  PubMed  Google Scholar 

  • van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ (2017) Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 46:4709–4773

    Article  PubMed  Google Scholar 

  • Bradley SR, Marino MJ, Wittmann M, Rouse ST, Awad H, Levey AI, Conn PJ (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata. J Neurosci 20:3085–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocke KS, Staufner C, Luksch H, Geiger KD, Stepulak A, Marzahn J, Schackert G, Temme A, Ikonomidou C (2010) Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol Ther 9:455–468

    Article  CAS  PubMed  Google Scholar 

  • Brown AK, Kimura Y, Zoghbi SS, Simeon FG, Liow J-S, Kreisl WC, Tau A, Fujita M, Pike VW, Innis RB (2008) Metabotropic glutamate subtype 5 receptors are quantified in the human brain with a novel radioligand for PET. J Nucl Med 49:2042–2048

    Article  PubMed  PubMed Central  Google Scholar 

  • Brownell AL, Kuruppu D, Kil KE, Jokivarsi K, Poutiainen P, Zhu A, Maxwell M (2015) PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflammation 12:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Burger C, Deschwanden A, Ametamey S, Johayem A, Mancosu B, Wyss M, Hasler G, Buck A (2010) Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nucl Med Biol 37:845–851

    Article  CAS  PubMed  Google Scholar 

  • Carroll FI (2008) Antagonists at metabotropic glutamate receptor subtype 5 structure activity relationships and therapeutic potential for addiction. Addict Rev 1141:221–232

    CAS  Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  CAS  PubMed  Google Scholar 

  • Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB, Bates GP, Young AB (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. Proc Natl Acad Sci U S A 95:6480–6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charvin D, Di Paolo T, Bezard E, Gregoire L, Takano A, Duvey G, Pioli E, Halldin C, Medori R, Conquet F (2018) An mGlu4-positive allosteric modulator alleviates parkinsonism in Primates. Mov Disord 33:1619–1631

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Conn PJ (2008) mGluR(5) positive allosteric modulators. Drugs Future 33:355–360

    Article  CAS  Google Scholar 

  • Chen L, Nabulsi N, Naganawa M, Zasadny K, Skaddan MB, Zhang L, Najafzadeh S, Lin SF, Helal CJ, Boyden TL et al (2016) Preclinical evaluation of 18F-PF-05270430, a novel PET radioligand for the phosphodiesterase 2A enzyme. J Nucl Med 57:1448–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiechio S (2016) Modulation of chronic pain by metabotropic glutamate receptors. Adv Pharmacol 75:63–89

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Chang K, Pickel JM, Badger JD 2nd, Roche KW (2011) Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci U S A 108:15219–15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Kim YK, Oh SW, Im HJ, Hwang DW, Kang H, Lee B, Lee YS, Jeong JM, Kim EE et al (2014) In vivo imaging of mGluR5 changes during epileptogenesis using [11C]ABP688 PET in pilocarpine-induced epilepsy rat model. PLoS One 9:e92765

    Article  PubMed  PubMed Central  Google Scholar 

  • Chua PC, Nagasawa JY, Bleicher LS, Munoz B, Schweiger EJ, Tehrani L, Anderson JJ, Cramer M, Chung J, Green MD et al (2005) Cyclohexenyl- and dehydropiperidinyl-alkynyl pyridines as potent metabotropic glutamate subtype 5 (mGlu5) receptor antagonists. Bioorg Med Chem Lett 15:4589–4593

    Article  CAS  PubMed  Google Scholar 

  • Cid JM, Tresadern G, Duvey G, Lutjens R, Finn T, Rocher JP, Poli S, Vega JA, de Lucas AI, Matesanz E et al (2014) Discovery of 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-(1H)-pyridone (JNJ-40411813): a novel positive allosteric modulator of the metabotropic glutamate 2 receptor. J Med Chem 57:6495–6512

    Article  CAS  PubMed  Google Scholar 

  • Clark DE (2003) In silico prediction of blood-brain barrier permeation. Drug Discov Today 8:927–933

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Article  CAS  PubMed  Google Scholar 

  • Cosford NDP, Tehrani L, Arruda J, King C, McDonald IA, Munoz B, Roppe J, Anderson E, Bristow L, Brodkin J et al (2002) 3-[(2-methyl-1,3-thiazol4-yl)etrynyl]pyredine (MTEP): design and synthesis of a potent and highly selective metabotropic glutamate subtype 5 (mGlu5) receptor antagonist with anxiolytic activity. Neuropharmacology 43:282–283

    Google Scholar 

  • Cosford NDP, Roppe J, Tehrani L, Schweiger EJ, Seiders TJ, Chaudary A, Rao S, Varney MA (2003a) [H-3]-methoxymethyl-MTEP and [H-3]-methoxy-PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 13:351–354

    Article  CAS  PubMed  Google Scholar 

  • Cosford NDP, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang XH, McDonald I et al (2003b) 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: a potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 46:204–206

    Article  CAS  PubMed  Google Scholar 

  • Crabbe M, Van der Perren A, Weerasekera A, Himmelreich U, Baekelandt V, Van Laere K, Casteels C (2018) Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol Aging 61:82–92

    Article  CAS  PubMed  Google Scholar 

  • Dahl K, Halldin C, Schou M (2017) New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin Transl Imaging 5:275–289

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLorenzo C, Kumar JSD, Mann JJ, Parsey RV (2011a) In vivo variation in metabotropic glutamate receptor subtype 5 binding using positron emission tomography and [(11)C]ABP688. J Cereb Blood Flow Metab 31:2169–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLorenzo C, Milak MS, Brennan KG, Kumar JSD, Mann JJ, Parsey RV (2011b) In vivo positron emission tomography imaging with [(11)C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons. Euro J Nucl Med Mol Imaging 38:1083–1094

    Article  CAS  Google Scholar 

  • DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, Yang J, Wen R, Mann JJ, Krystal JH et al (2015) In vivo ketamine-induced changes in [(1)(1)C]ABP688 binding to metabotropic glutamate receptor subtype 5. Biol Psychiatry 77:266–275

    Article  CAS  PubMed  Google Scholar 

  • DeLorenzo C, Gallezot JD, Gardus J, Yang J, Planeta B, Nabulsi N, Ogden RT, Labaree DC, Huang YH, Mann JJ et al (2017) In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [(11)C]ABP688 and [(18)F]FPEB. J Cereb Blood Flow Metab 37:2716–2727

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH (2018) Chemistry for positron emission tomography: recent advances in (11) C-, (18) F-, (13) N-, and (15) O-labeling reactions. Angew Chem Int Ed Engl 58:2580–2605

    Article  Google Scholar 

  • Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, Burger C, Auberson YP, Sovago J, Stockmeier CA et al (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 positron emission tomography and postmortem study. Curr Neuropharmacol 9:15–15

    Google Scholar 

  • Dickerson JW, Conn PJ (2012) Therapeutic potential of targeting metabotropic glutamate receptors for Parkinson’s disease. Neurodegener Dis Manag 2:221–232

    Article  PubMed  PubMed Central  Google Scholar 

  • DuBois JM, Rousset OG, Guiot MC, Hall JA, Reader AJ, Soucy JP, Rosa-Neto P, Kobayashi E (2016a) Metabotropic glutamate receptor type 5 (mGluR5) cortical abnormalities in focal cortical dysplasia identified in vivo with [11C]ABP688 positron-emission tomography (PET) imaging. Cereb Cortex 26:4170–4179

    Article  PubMed  PubMed Central  Google Scholar 

  • DuBois JM, Rousset OG, Rowley J, Porras-Betancourt M, Reader AJ, Labbe A, Massarweh G, Soucy JP, Rosa-Neto P, Kobayashi E (2016b) Characterization of age/sex and the regional distribution of mGluR5 availability in the healthy human brain measured by high-resolution [(11)C]ABP688 PET. Eur J Nucl Med Mol Imaging 43:152–162

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Mathis CA (2006) Targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:161–164

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Kilbourn MR, Mathis CA (2006) Discussion of targeting proteins in vivo: in vitro guidelines. Nucl Med Biol 33:449–451

    Article  CAS  PubMed  Google Scholar 

  • Elmenhorst D, Aliaga A, Bauer A, Rosa-Neto P (2012) Test-retest stability of cerebral mGluR(5) quantification using [(1)(1)C]ABP688 and positron emission tomography in rats. Synapse 66:552–560

    Article  CAS  PubMed  Google Scholar 

  • Emmitte KA (2011) Recent advances in the design and development of novel negative allosteric modulators of mGlu(5). ACS Chem Neurosci 2:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engers DW, Niswender CM, Weaver CD, Jadhav S, Menon UN, Zamorano R, Conn PJ, Lindsley CW, Hopkins CR (2009) Synthesis and evaluation of a series of heterobiarylamides that are centrally penetrant metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulators (PAMs). J Med Chem 52:4115–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterlis I, DellaGioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, Yang J, Pittenger C, Sanacora G, Krystal JH et al (2018a) Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [(11)C]ABP688 and PET imaging study in depression. Mol Psychiatry 23:824–832

    Article  CAS  PubMed  Google Scholar 

  • Esterlis I, Holmes SE, Sharma P, Krystal JH, DeLorenzo C (2018b) Metabotropic glutamatergic receptor 5 and stress disorders: knowledge gained from receptor imaging studies. Biol Psychiatry 84:95–105

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Wong DF, Brasic JR, Kuwabara H, Mathur A, Folsom TD, Jacob S, Realmuto GM, Pardo JV, Lee S (2018) Metabotropic glutamate receptor 5 tracer [(18)F]-FPEB displays increased binding potential in postcentral gyrus and cerebellum of male individuals with autism: a pilot PET study. Cerebellum Ataxias 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Fotuhi M, Sharp AH, Glatt CE, Hwang PM, von Krosigk M, Snyder SH, Dawson TM (1993) Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J Neurosci 13:2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler CJ. PET and drug research and Development_Fowler_1999.Pdf. 1999.

    Google Scholar 

  • French AN, Napolitano E, VanBrocklin HF, Hanson RN, Welch MJ, Katzenellenbogen JA (1993) Synthesis, radiolabeling and tissue distribution of 11 beta-fluoroalkyl- and 11 beta-fluoroalkoxy-substituted estrogens: target tissue uptake selectivity and defluorination of a homologous series of fluorine-18-labeled estrogens. Nucl Med Biol 20:31–47

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Kawamura K, Kumata K, Hatori A, Yui J, Yanamoto K, Yoshida Y, Ogawa M, Nengaki N et al (2011) Synthesis and evaluation of 6-[1-(2-[(18)F]fluoro-3-pyridyl)-5-methyl-1H-1,2,3-triazol-4-yl]quinoline for positron emission tomography imaging of the metabotropic glutamate receptor type 1 in brain. Bioorg Med Chem 19:102–110

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga M, Maeda J, Yui J, Hatori A, Yamasaki T, Kawamura K, Kumata K, Yoshida Y, Nagai Y, Higuchi M et al (2012a) Characterization of 1-(2-[(18) F]fluoro-3-pyridyl)-4-(2-isopropyl-1-oxo- isoindoline-5-yl)-5-methyl-1H-1,2,3-triazole, a PET ligand for imaging the metabotropic glutamate receptor type 1 in rat and monkey brains. J Neurochem 121:115–124

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Maeda J, Yui J, Xie L, Nagai Y, Nengaki N, Hatori A, Kumata K, Kawamura K, Zhang MR (2012b) Development of N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[11C]methylb enzamide for positron emission tomography imaging of metabotropic glutamate 1 receptor in monkey brain. J Med Chem 55:11042–11051

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Yui J, Hatori A, Xie L, Kawamura K, Asagawa C, Kumata K, Yoshida Y, Ogawa M et al (2012c) Synthesis and evaluation of novel radioligands for positron emission tomography imaging of metabotropic glutamate receptor subtype 1 (mGluR1) in rodent brain. J Med Chem 55:2342–2352

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga M, Yamasaki T, Nengaki N, Ogawa M, Kumata K, Shimoda Y, Yui J, Xie L, Zhang Y, Kawamura K, Zhang MR (2016) Radiosynthesis and evaluation of 5-methyl-N-(4-[(11)C]methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine ([(11)C]ADX88178) as a novel radioligand for imaging of metabotropic glutamate receptor subtype 4 (mGluR4). Bioorg Med Chem Lett 26:370–374

    Article  CAS  PubMed  Google Scholar 

  • Gasparini F, Lingenhoehl K, Flor PJ, Stoehr N, Stierlin C, Heinrich M, Vranesic I, Allgeier H, Biollaz M, Heckendorn R et al (1999) Discovery of 2-methyl-6-(phenylethynyl)-pyridine (MPEP): a highly potent and selective mGluR5 antagonist. Neuropharmacology 38:52

    Article  Google Scholar 

  • Gasparini F, Andres H, Flor PJ, Heinrich M, Inderbitzin W, Lingenhohl K, Muller H, Munk VC, Omilusik K, Stierlin C et al (2002) [H-3]-M-MPEP, a potent, subtype-selective radioligand for the metabotropic glutamate receptor subtype 5. Bioorg Med Chem Lett 12:407–409

    Article  CAS  PubMed  Google Scholar 

  • Gasparini F, Bilbe G, Gomez-Mancilla B, Spooren W (2008) mGluR5 antagonists: discovery, characterization and drug development. Curr Opin Drug Discovery Develop 11:655–665

    CAS  Google Scholar 

  • Gereau RW, Conn PJ (1995) Roles of specific metabotropic glutamate-receptor subtypes in regulation of hippocampal Ca1 pyramidal cell excitability. J Neurophysiol 74:122–129

    Article  CAS  PubMed  Google Scholar 

  • Ghose S, Crook JM, Bartus CL, Sherman TG, Herman MM, Hyde TM, Kleinman JE, Akil M (2008) Metabotropic glutamate receptor 2 and 3 gene expression in the human prefrontal cortex and mesencephalon in schizophrenia. Int J Neurosci 118:1609–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta DS, McCullumsmith GE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse 57:123–131

    Article  CAS  PubMed  Google Scholar 

  • Hamill TG, Seiders TJ, Krause S, Ryan C, Sanabria S, Gibson RE, Patel S, Cosford NDP, Roppe J, Yang J et al (2003) The synthesis and characterization of mGluR5 receptor PET ligands. J Label Compd Radiopharm 46:S184

    Google Scholar 

  • Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, Cosford NDP, Roppe J, Kamenecka T, Patel S et al (2005) Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 56:205–216

    Article  CAS  PubMed  Google Scholar 

  • Hefti K, Holst SC, Sovago J, Bachmann V, Buck A, Ametamey SM, Scheidegger M, Berthold T, Gomez-Mancilla B, Seifritz E, Landolt HP (2013) Increased metabotropic glutamate receptor subtype 5 availability in human brain after one night without sleep. Biol Psychiatry 73:161–168

    Article  CAS  PubMed  Google Scholar 

  • Holmes SE, Girgenti MJ, Davis MT, Pietrzak RH, DellaGioia N, Nabulsi N, Matuskey D, Southwick S, Duman RS, Carson RE et al (2017) Altered metabotropic glutamate receptor 5 markers in PTSD: in vivo and postmortem evidence. Proc Natl Acad Sci U S A 114:8390–8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holst SC, Sousek A, Hefti K, Saberi-Moghadam S, Buck A, Ametamey SM, Scheidegger M, Franken P, Henning A, Seifritz E et al (2017) Cerebral mGluR5 availability contributes to elevated sleep need and behavioral adjustment after sleep deprivation. Elife 6:e28751

    Article  PubMed  PubMed Central  Google Scholar 

  • Honer M, Stoffel A, Kessler LJ, Schubiger PA, Ametamey SM (2007) Radiolabeling and in vitro and in vivo evaluation of [F-18]-FE-DABP688 as a PET radioligand for the metabotropic glutamate receptor subtype 5. Nucl Med Biol 34:973–980

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Lu S, Xu R, Liow JS, Woock AE, Jenko KJ, Gladding RL, Zoghbi SS, Innis RB, Pike VW (2015) [carbonyl-11C]4-Fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl) benzamide ([11C]FIMX) is an effective radioligand for PET imaging of metabotropic glutamate receptor 1 (mGluR1) in monkey brain. Nucl Med Biol 42:967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hostetler ED, Burns HD (2003) An improved synthesis of substituted [C-11]toluenes via Suzuki coupling with [C-11]methyl iodide. J Label Compd Radiopharm 46:S75

    Google Scholar 

  • Hostetler ED, Eng W, Joshi AD, Sanabria-Bohorquez S, Kawamoto H, Ito S, O’Malley S, Krause S, Ryan C, Patel S et al (2011) Synthesis, characterization, and monkey PET studies of [(18)F]MK-1312, a PET tracer for quantification of mGluR1 receptor occupancy by MK-5435. Synapse 65:125–135

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Narendran R, Bischoff F, Guo NN, Zhu ZH, Bae SA, Lesage AS, Laruelle M (2005) A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[C-11]methyl-6-quinolinyl) (cis-4-methoxycyclohexyl)methanone. J Med Chem 48:5096–5099

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Narendran R, Bischoff F, Guo N, Bae SA, Hwang DR, Lesage AS, Laruelle M (2012) Synthesis and characterization of two PET radioligands for the metabotropic glutamate 1 (mGlu1) receptor. Synapse 66:1002–1014

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Miura Y, Ishikawa K, Ishii K, Ishiwata K (2015) Decreased metabotropic glutamate receptor type 1 availability in a patient with spinocerebellar ataxia type 6: a (11)C-ITMM PET study. J Neurol Sci 355:202–205

    Article  PubMed  Google Scholar 

  • Ishibashi K, Miura Y, Toyohara J, Ishii K, Ishiwata K (2017) Comparison of imaging using (11)C-ITMM and (18)F-FDG for the detection of cerebellar ataxia. J Neurol Sci 375:97–102

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Miura Y, Toyohara J, Ishiwata K, Ishii K (2019) Unchanged type 1 metabotropic glutamate receptor availability in patients with Alzheimer’s disease: a study using (11)C-ITMM positron emission tomography. Neuroimage Clin 22:101783

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S, Hirata Y, Nagatomi Y, Satoh A, Suzuki G, Kimura T, Satow A, Maehara S, Hikichi H, Hata M et al (2009) Discovery and biological profile of isoindolinone derivatives as novel metabotropic glutamate receptor 1 antagonists: a potential treatment for psychotic disorders. Bioorg Med Chem Lett 19:5310–5313

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke G, Wettstein JG, Nordquist RE, Spooren W (2008) mGlu5 receptor antagonists and their therapeutic potential. Expert Opin Ther Patents 18:123–142

    Article  CAS  Google Scholar 

  • Kang Y, Henchcliffe C, Verma A, Vallabhajosula S, He B, Kothari PJ, Pryor KO, Mozley PD (2019) 18F-FPEB PET/CT shows mGluR5 upregulation in Parkinson’s disease. J Neuroimaging 29:97–103

    Article  PubMed  Google Scholar 

  • Kessler LJ. Development of novel ligands for PET imaging of metabotropic glutamate receptor subtype 5 (mGLuR5). Dissertation No 15633, ETH-ZĂĽrich. 2014

    Google Scholar 

  • Kil KE, Zhang Z, Jokivarsi K, Gong C, Choi JK, Kura S, Brownell AL (2013) Radiosynthesis of N-(4-chloro-3-[(11)C]methoxyphenyl)-2-picolinamide ([(11)C]ML128) as a PET radiotracer for metabotropic glutamate receptor subtype 4 (mGlu4). Bioorg Med Chem 21:5955–5962

    Article  CAS  PubMed  Google Scholar 

  • Kil KE, Poutiainen P, Zhang Z, Zhu A, Choi JK, Jokivarsi K, Brownell AL (2014) Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for metabotropic glutamate receptor subtype 4 (mGlu4). J Med Chem 57:9130–9138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kil KE, Poutiainen P, Zhang Z, Zhu A, Kuruppu D, Prabhakar S, Choi JK, Tannous BA, Brownell AL (2016) Synthesis and evaluation of N-(methylthiophenyl)picolinamide derivatives as PET radioligands for metabotropic glutamate receptor subtype 4. Bioorg Med Chem Lett 26:133–139

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Simeon FG, Hatazawa J, Mozley PD, Pike VW, Innis RB, Fujita M (2010) Biodistribution and radiation dosimetry of a positron emission tomographic ligand, (18)F-SP203, to image metabotropic glutamate subtype 5 receptors in humans. Euro J Nucl Med Mol Imaging 37:1943–1949

    Article  Google Scholar 

  • Kimura Y, Simeon FG, Zoghbi SS, Zhang Y, Hatazawa J, Pike VW, Innis RB, Fujita M (2012) Quantification of metabotropic glutamate subtype 5 receptors in the brain by an equilibrium method using 18F-SP203. NeuroImage 59:2124–2130

    Article  CAS  PubMed  Google Scholar 

  • Kohara A, Toya T, Tamura S, Watabiki T, Nagakura Y, Shitaka Y, Hayashibe S, Kawabata S, Okada M (2005) Radioligand binding properties and pharmacological characterization of 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198), a high-affinity, selective, and noncompetitive antagonist of metabotropic glutamate receptor type 1. J Pharmacol Exp Ther 315:163–169

    Article  CAS  PubMed  Google Scholar 

  • Kohara A, Takahashi M, Yatsugi S, Tamura S, Shitaka Y, Hayashibe S, Kawabata S, Okada M (2008) Neuroprotective effects of the selective type 1 metabotropic glutamate receptor antagonist YM-202074 in rat stroke models. Brain Res 1191:168–179

    Article  CAS  PubMed  Google Scholar 

  • Kokic M, Honer M, Kessler LJ, Grauert M, Schubiger PA, Ametamey SM (2002) Synthesis and in vitro and in vivo evaluation of [C-11]methyl-BIII277CL for imaging the PCP-binding site of the NMDA receptor by PET. J Recept Signal Transduct Res 22:123–139

    Article  CAS  PubMed  Google Scholar 

  • Kosten L, Verhaeghe J, Wyffels L, Stroobants S, Staelens S (2018) Acute ketamine infusion in rat does not affect in vivo [(11)C]ABP688 binding to metabotropic glutamate receptor subtype 5. Mol Imaging 17:1536012118788636

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause SM, Hamill TG, Seiders TJ, Ryan C, Sanabria S, Gibson RE, Patel S, Cosford NDP, Roppe JR, Hargreaves RJ, Burns HD (2003) In vivo characterization of PET ligands for the mGluR5 receptor in rhesus monkey. Mol Imaging Biol 5:166

    Google Scholar 

  • Kulkarni SS, Zou MF, Cao JJ, Deschamps JR, Rodriguez AL, Conn PJ, Newman AH (2009) Structure-activity relationships comparing N-(6-methylpyridin-yl)-substituted aryl amides to 2-Methyl-6-(substituted-arylethynyl)pyridines or 2-Methyl-4-(substituted-arylethynyl)thiazoles as novel metabotropic glutamate receptor subtype 5 antagonists. J Med Chem 52:3563–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumata K, Yamasaki T, Hatori A, Zhang Y, Mori W, Fujinaga M, Xie L, Okubo T, Nengaki N, Zhang MR (2017) Synthesis and in vitro evaluation of three novel radiotracers for imaging of metabotropic glutamate receptor subtype 2 in rat brain. Bioorg Med Chem Lett 27:3139–3143

    Article  CAS  PubMed  Google Scholar 

  • Kumata K, Hatori A, Yamasaki T, Zhang Y, Mori W, Fujinaga M, Xie L, Nengaki N, Zhang MR (2019) Synthesis and evaluation of 4-(2-fluoro-4-[(11)C]methoxyphenyl)-5-((2-methylpyridin-4-yl)methoxy)picolinamide for PET imaging of the metabotropic glutamate receptor 2 in the rat brain. Bioorg Med Chem 27:483–491

    Article  CAS  PubMed  Google Scholar 

  • de Laat B, Weerasekera A, Leurquin-Sterk G, Bormans G, Himmelreich U, Casteels C, Van Laere K (2018) Glutamatergic biomarkers for cocaine addiction: a longitudinal study using MR spectroscopy and mGluR5 PET in self-administering rats. J Nucl Med 59:952–959

    Article  PubMed  Google Scholar 

  • de Laat B, Weerasekera A, Leurquin-Sterk G, Gsell W, Bormans G, Himmelreich U, Casteels C, Van Laere K (2019) Effects of alcohol exposure on the glutamatergic system: a combined longitudinal (18) F-FPEB and (1) H-MRS study in rats. Addict Biol 24:696–706

    Article  PubMed  Google Scholar 

  • Lam J, DuBois JM, Rowley J, Gonzalez-Otarula KA, Soucy JP, Massarweh G, Hall JA, Guiot MC, Rosa-Neto P, Kobayashi E (2019) In vivo metabotropic glutamate receptor type 5 abnormalities localize the epileptogenic zone in mesial temporal lobe epilepsy. Ann Neurol 85:218–228

    Article  CAS  PubMed  Google Scholar 

  • Lavreysen H, Pereira SN, Leysen JE, Langlois X, Lesage AS (2004a) Metabotropic glutamate 1 receptor distribution and occupancy in the rat brain: a quantitative autoradiographic study using [3H]R214127. Neuropharmacology 46:609–619

    Article  CAS  PubMed  Google Scholar 

  • Lavreysen H, Wouters R, Bischoff F, Nobrega Pereira S, Langlois X, Blokland S, Somers M, Dillen L, Lesage AS (2004b) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 47:961–972

    Article  CAS  PubMed  Google Scholar 

  • Lea PM, Faden AI (2006) Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev 12:149–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee B, Kim YK, Lee JY, Kim YJ, Lee YS, Lee DS, Chung JK, Jeong JM (2017) Preclinical anaylses of [(18)F]cEFQ as a PET tracer for imaging metabotropic glutamate receptor type 1 (mGluR1). J Cereb Blood Flow Metab 37:2283–2293

    Article  CAS  PubMed  Google Scholar 

  • Leurquin-Sterk G, Van den Stock J, Crunelle CL, de Laat B, Weerasekera A, Himmelreich U, Bormans G, Van Laere K (2016) Positive association between limbic metabotropic glutamate receptor 5 availability and novelty-seeking temperament in humans: an 18F-FPEB PET study. J Nucl Med 57:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Leurquin-Sterk G, Celen S, Van Laere K, Koole M, Bormans G, Langlois X, Van Hecken A, Te Riele P, Alcazar J, Verbruggen A et al (2017) What we observe in vivo is not always what we see in vitro: development and validation of 11C-JNJ-42491293, a novel radioligand for mGluR2. J Nucl Med 58:110–116

    Article  CAS  PubMed  Google Scholar 

  • Leuzy A, Zimmer ER, Dubois J, Pruessner J, Cooperman C, Soucy JP, Kostikov A, Schirmaccher E, Desautels R, Gauthier S, Rosa-Neto P (2016) In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct 221:1387–1402

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Huang YY (2014) In vivo imaging of the metabotropic glutamate receptor 1 (mGluR1) with positron emission tomography: recent advance and perspective. Curr Med Chem 21:113–123

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hagiwara H, Takaishi M, Teceno T, Krause S, Sasaki T, McCracken P, Koyama T, Terauchi T (2017) Discovery of a new class of mGluR2 selective group II mGluR NAM PET tracer. J Nucl Med 58:548

    Google Scholar 

  • Lindemann L, Jaeschke G, Michalon A, Vieira E, Honer M, Spooren W, Porter R, Hartung T, Kolczewski S, Buttelmann B et al (2011) CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J Pharmacol Exp Ther 339:474–486

    Article  CAS  PubMed  Google Scholar 

  • Lindsley CW, Emmitte KA (2009) Recent progress in the discovery and development of negative allosteric modulators of mGluR5. Curr Opin Drug Discovery Develop 12:446–457

    CAS  Google Scholar 

  • Lindsley CW, Niswender CM, Engers DW, Hopkins CR (2009) Recent progress in the development of mGluR4 positive allosteric modulators for the treatment of Parkinson’s disease. Curr Top Med Chem 9:949–963

    CAS  PubMed  Google Scholar 

  • Lohith T, McQuade P, Salinas C, Anderson M, Reynders T, Bautmans A, Bormans G, Serdons K, Van Laere K, Hostetler E (2016) First-in-human PET imaging of mGluR2 receptors. J Nucl Med 57:213

    Google Scholar 

  • Lucatelli C, Honer M, Salazar JF, Ross TL, Schubiger PA, Ametamey SM (2009) Synthesis, radiolabeling, in vitro and in vivo evaluation of [F-18]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5. Nucl Med Biol 36:613–622

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kumata K, Yui J, Zhang Y, Yamasaki T, Hatori A, Fujinaga M, Nengaki N, Xie L, Wang H, Zhang MR (2017) Synthesis and evaluation of 1-(cyclopropylmethyl)-4-(4-[(11)C]methoxyphenyl)-piperidin-1-yl-2-oxo-1,2-dihydro pyridine-3-carbonitrile ([(11)C]CMDC) for PET imaging of metabotropic glutamate receptor 2 in the rat brain. Bioorg Med Chem 25:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Mabire D, Coupa S, Adelinet C, Poncelet A, Simonnet Y, Venet M, Wouters R, Lesage AS, Van Beijsterveldt L, Bischoff F (2005) Synthesis, structure-activity relationship, and receptor pharmacology of a new series of quinoline derivatives acting as selective, noncompetitive mGlu1 antagonists. J Med Chem 48:2134–2153

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Williams DL Jr, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci U S A 100:13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzitelli M, Palazzo E, Maione S, Neugebauer V (2018) Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation. Front Mol Neurosci 11:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori H, Mishina M (1995) Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    Article  CAS  PubMed  Google Scholar 

  • Moussawi K, Kalivas PW (2010) Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol 639:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu L, Schubiger PA, Ametamey SM (2010) Radioligands for the PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem 10:1558–1568

    Article  CAS  PubMed  Google Scholar 

  • Muguruza C, Meana JJ, Callado LF (2016) Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front Pharmacol 7:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller Herde A, Boss SD, He Y, Schibli R, Mu L, Ametamey SM (2018) Ketamine and ceftriaxone-induced alterations in glutamate levels do not impact the specific binding of metabotropic glutamate receptor subtype 5 radioligand [(18)F]PSS232 in the rat brain. Pharmaceuticals (Basel) 11(3):83

    Article  Google Scholar 

  • Muller Herde A, Schibli R, Weber M, Ametamey SM (2019) Metabotropic glutamate receptor subtype 5 is altered in LPS-induced murine neuroinflammation model and in the brains of AD and ALS patients. Eur J Nucl Med Mol Imaging 46:407–420

    Article  CAS  PubMed  Google Scholar 

  • Myers R (2001) The biological application of small animal PET imaging. Nucl Med Biol 28:585–593

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer V, Galhardo V, Maione S, Mackey SC (2009) Forebrain pain mechanisms. Brain Res Rev 60:226–242

    Article  PubMed  Google Scholar 

  • Ohe T, Sato M, Tanaka S, Fujino N, Hata M, Shibata Y, Kanatani A, Fukami T, Yamazaki M, Chiba M, Ishii Y (2003) Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid/plasma concentration ratio. Drug Metab Dispos 31:1251–1254

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1998) Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Mol Brain Res 56:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ornstein PL, Bleisch TJ, Arnold MB, Kennedy JH, Wright RA, Johnson BG, Tizzano JP, Helton DR, Kallman MJ, Schoepp DD, Herin M (1998) 2-substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 2. Effects of aromatic substitution, pharmacological characterization, and bioavailability. J Med Chem 41:358–378

    Article  CAS  PubMed  Google Scholar 

  • Palucha A, Branski P, Szewczyk B, Wieronska JM, Klak K, Pilc A (2005) Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacol Biochem Behav 81:901–906

    Article  CAS  PubMed  Google Scholar 

  • Parmentier ML, Galvez T, Acher F, Peyre B, Pellicciari R, Grau Y, Bockaert J, Pin JP (2000) Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology 39:1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Passchier J, Gee A, Willemsen A, Vaalburg W, van Waarde A (2002) Measuring drug-related receptor occupancy with positron emission tomography. Methods 27:278–286

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Krause SM, Hamill T, Chaudhary A, Burns DH, Gibson RA (2003) In vitro characterization of [H-3]MethoxyPyEP, an mGluR5 selective radioligand. Life Sci 73:371–379

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Ndubizu O, Hamill T, Chaudhary A, Burns HD, Hargreaves R, Gibson RE (2005) Screening cascade and development of potential positron emission tomography radiotracers for mGluR5: in vitro and in vivo characterization. Mol Imaging Biol 7:314–323

    Article  PubMed  Google Scholar 

  • Patel S, Hamill TG, Connolly B, Jagoda E, Li W, Gibson RE (2007) Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [F-18]F-PEB. Nucl Med Biol 34:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Piel M, Vernaleken I, Rosch F (2014) Positron emission tomography in CNS drug discovery and drug monitoring. J Med Chem 57:9232–9258

    Article  CAS  PubMed  Google Scholar 

  • Pietraszek M, Nagel J, Gravius A, Schafer D, Danysz W (2007) The role of group I metabotropic glutamate receptors in schizophrenia. Amino Acids 32:173–178

    Article  CAS  PubMed  Google Scholar 

  • Pike VW (2009) PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai RL, Tipre DN (2016) Metabotropic glutamate receptor 5-a promising target in drug development and neuroimaging. Eur J Nucl Med Mol Imaging 43(6):1151–1170

    Article  CAS  PubMed  Google Scholar 

  • Porter RHP, Jaeschke G, Spooren W, Ballard TM, Buttelmann B, Kolczewski S, Peters JU, Prinssen E, Wichmann J, Vieira E et al (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 315:711–721

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran J, Majo VJ, Milak MS, Kassir SA, Palner M, Savenkova L, Mali P, Arango V, Mann JJ, Parsey RV, Kumar JSD (2010) Synthesis, in vitro and in vivo evaluation of [(11)C]MMTP: a potential PET ligand for mGluR1 receptors. Bioorg Med Chem Lett 20:3499–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboisson P, Breitholtz-Emanuelsson A, Dahllof H, Edwards L, Heaton WL, Isaac M, Jarvie K, Kers A, Minidis AB, Nordmark A et al (2012) Discovery and characterization of AZD9272 and AZD6538-two novel mGluR5 negative allosteric modulators selected for clinical development. Bioorg Med Chem Lett 22:6974–6979

    Article  CAS  PubMed  Google Scholar 

  • Richards G, Messer J, Malherbe P, Pink R, Brockhaus M, Stadler H, Wichmann J, Schaffhauser H, Mutel V (2005) Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain revealed by [3H]LY354740 binding in vitro and quantitative radioautography: correlation with the sites of synthesis, expression, and agonist stimulation of [35S]GTPgammas binding. J Comp Neurol 487:15–27

    Article  CAS  PubMed  Google Scholar 

  • Ritzen A, Mathiesen JM, Thomsen C (2005) Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 97:202–213

    Article  CAS  PubMed  Google Scholar 

  • Ritzen A, Sindet R, Hentzer M, Svendsen N, Brodbeck RM, Bundgaard C (2009) Discovery of a potent and brain penetrant mGluR5 positive allosteric modulator. Bioorg Med Chem Lett 19:3275–3278

    Article  CAS  PubMed  Google Scholar 

  • Romano C, Yang WL, OMalley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271:28612–28616

    Article  CAS  PubMed  Google Scholar 

  • Rook JM, Tantawy MN, Ansari MS, Felts AS, Stauffer SR, Emmitte KA, Kessler RM, Niswender CM, Daniels JS, Jones CK et al (2015) Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology 40:755–765

    Article  CAS  PubMed  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88:427–435

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Nagatomi Y, Hirata Y, Ito S, Suzuki G, Kimura T, Maehara S, Hikichi H, Satow A, Hata M et al (2009) Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg Med Chem Lett 19:5464–5468

    Article  CAS  PubMed  Google Scholar 

  • Sephton SM, Dennler P, Leutwiler DS, Mu L, Schibli R, Kramer SD, Ametamey SM (2012) Development of [(18)F]-PSS223 as a PET tracer for imaging of metabotropic glutamate receptor subtype 5 (mGluR5). Chimia (Aarau) 66:201–204

    Article  CAS  Google Scholar 

  • Sephton SM, Mu LJ, Dragic M, Kramer SD, Schibli R, Ametamey SM (2013) Synthesis and in vitro evaluation of E- and Z-geometrical isomers of PSS232 as potential metabotropic glutamate receptors subtype 5 (mGlu(5)) binders. Synthesis-Stuttgart 45:1877–1885

    Article  CAS  Google Scholar 

  • Sephton SM, Herde AM, Mu L, Keller C, Rudisuhli S, Auberson Y, Schibli R, Kramer SD, Ametamey SM (2015) Preclinical evaluation and test-retest studies of [(18)F]PSS232, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging 42:128–137

    Article  CAS  PubMed  Google Scholar 

  • Severance AJ, Parsey RV, Kumar JSD, Underwood MD, Arango V, Majoa VJ, Prabhakaran J, Simpson NR, Van Heertum RL, Mann JJ (2006) In vitro and in vivo evaluation of [C-11]MPEPy as a potential PET ligand for mGlu(5) receptors. Nucl Med Biol 33:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Shetty HU, Zoghbi SS, Simeon FG, Liow JS, Brown AK, Kannan P, Innis RB, Pike VW (2008) Radiodefluorination of 3-Fluoro-5-(2-(2-[F-18](fluoromethyl)-thiazol-4-yl) ethynyl)benzonitrile ([F-18]SP203), a radioligand for imaging brain metabotropic glutamate Subtype-5 receptors with positron emission tomography, occurs by Glutathionylation in rat brain. J Pharmacol Exp Ther 327:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda Y, Yamasaki T, Fujinaga M, Ogawa M, Kurihara Y, Nengaki N, Kumata K, Yui J, Hatori A, Xie L et al (2016) Synthesis and evaluation of novel radioligands based on 3-[5-(Pyridin-2-yl)-2H-tetrazol-2-yl]benzonitrile for positron emission tomography imaging of metabotropic glutamate receptor subtype 5. J Med Chem 59:3980–3990

    Article  CAS  PubMed  Google Scholar 

  • Shin SS, Martino JJ, Chen S (2008) Metabotropic glutamate receptors (mGlus) and cellular transformation. Neuropharmacology 55:396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeon FG, Brown AK, Zoghbi SS, Patterson VM, Innis RB, Pike VW (2007) Synthesis and simple F-18-labeling of 3-fluoro-5-(2-(2-(fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile as a high affinity radioligand for imaging monkey brain metabotropic glutamate subtype-5 receptors with positron emission tomography. J Med Chem 50:3256–3266

    Article  CAS  PubMed  Google Scholar 

  • Smart K, Cox SML, Nagano-Saito A, Rosa-Neto P, Leyton M, Benkelfat C (2018) Test-retest variability of [(11) C]ABP688 estimates of metabotropic glutamate receptor subtype 5 availability in humans. Synapse 72:e22041

    Article  PubMed  Google Scholar 

  • Smart K, Cox SML, Kostikov A, Shalai A, Scala SG, Tippler M, Jaworska N, Boivin M, Seguin JR, Benkelfat C, Leyton M (2019a) Effect of (Z)-isomer content on [(11)C]ABP688 binding potential in humans. Eur J Nucl Med Mol Imaging 46:1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Smart K, Cox SML, Scala SG, Tippler M, Jaworska N, Boivin M, Seguin JR, Benkelfat C, Leyton M (2019b) Sex differences in [(11)C]ABP688 binding: a positron emission tomography study of mGlu5 receptors. Eur J Nucl Med Mol Imaging 46:1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooren W, Gasparini F (2004) mGluS receptor antagonists: a novel class of anxiolytics? Drug News Perspect 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Spooren WPJM, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275

    CAS  PubMed  Google Scholar 

  • Spooren W, Ballard T, Gasparini F, Amalric M, Mutel V, Schreiber R (2003) Insight into the function of group I and group II metabotropic glutamate (mGlu) receptors: behavioural characterization and implications for the treatment of CNS disorders. Behav Pharmacol 14:257–277

    Article  CAS  PubMed  Google Scholar 

  • Stephenson NA, Holland JP, Kassenbrock A, Yokell DL, Livni E, Liang SH, Vasdev N (2015) Iodonium ylide-mediated radiofluorination of 18F-FPEB and validation for human use. J Nucl Med 56:489–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Doi H, Bjorkman M, Andersson Y, Langstrom B, Watanabe Y, Noyori R (1997) Rapid coupling of methyl iodide with aryltributylstannanes mediated by palladium(0) complexes: a general protocol for the synthesis of (CH3)-C-11-labeled PET tracers. Chem Eur J 3:2039–2042

    Article  CAS  Google Scholar 

  • Suzuki G, Kimura T, Satow A, Kaneko N, Fukuda J, Hikichi H, Sakai N, Maehara S, Kawagoe-Takaki H, Hata M et al (2007) Pharmacological characterization of a new, orally active and potent allosteric metabotropic glutamate receptor 1 antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl- 3,6-dihydropyridine-1(2H)-carboxamide (FTIDC). J Pharmacol Exp Ther 321:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G, Kawagoe-Takaki H, Inoue T, Kimura T, Hikichi H, Murai T, Satow A, Hata M, Maehara S, Ito S et al (2009) Correlation of receptor occupancy of metabotropic glutamate receptor subtype 1 (mGluR1) in mouse brain with in vivo activity of allosteric mGluR1 antagonists. J Pharmacol Sci 110:315–325

    Article  CAS  PubMed  Google Scholar 

  • Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4:131–144

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Nag S, Jia Z, Jahan M, Forsberg A, Arakawa R, Gryback P, Duvey G, Halldin C, Charvin D (2019) Characterization of [(11)C]PXT012253 as a PET radioligand for mGlu4 allosteric modulators in nonhuman Primates. Mol Imaging Biol 21:500–508

    Article  CAS  PubMed  Google Scholar 

  • Tamagnan GD, Batis J, Koren AO, Lee H, Alagille D, Jennings D, Russell D, Carson R, Marek K, Seibyl JP (2009) Initial human studies of [18]-FPEB, a selective metabotropic glutamate receptor 5. Eur J Nucl Med Mol Imaging 36(Suppl 2):S223

    Google Scholar 

  • Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavares AA, Lewsey J, Dewar D, Pimlott SL (2012) Radiotracer properties determined by high performance liquid chromatography: a potential tool for brain radiotracer discovery. Nucl Med Biol 39:127–135

    Article  CAS  PubMed  Google Scholar 

  • Telu S, Chun J, Simeon FG, Lu S, Pike VW (2011) Syntheses of an mGlurR5 PET radioligands through the radiofluorination of a diaryliodonium tosylates. Org Biomol Chem 9:6629–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 40:311–318

    Article  CAS  PubMed  Google Scholar 

  • Toyohara J, Sakata M, Fujinaga M, Yamasaki T, Oda K, Ishii K, Zhang MR, Moriguchi Jeckel CM, Ishiwata K (2013a) Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography. Nucl Med Biol 40:214–220

    Article  CAS  PubMed  Google Scholar 

  • Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, Fujinaga M, Yamasaki T, Zhang MR, Ishiwata K (2013b) Initial human PET studies of metabotropic glutamate receptor type 1 ligand 11C-ITMM. J Nucl Med 54:1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Trabanco AA, Bartolome JM, Cid JM (2019) mGluR2 positive allosteric modulators: an updated patent review (2013-2018). Expert Opin Ther Pat 29:497–507

    Article  CAS  PubMed  Google Scholar 

  • Treyer V, Streffer J, Ametamey SM, Bettio A, Blauenstein P, Schmidt M, Gasparini F, Fischer U, Hock C, Buck A (2008) Radiation dosimetry and biodistribution of 11C-ABP688 measured in healthy volunteers. Euro J Nucl Med Mol Imaging 35:766–770

    Article  CAS  Google Scholar 

  • Tsai VWW, Scott HL, Lewis RJ, Dodd PR (2005) The role of group I metabotropic glutamate receptor’s in neuronal excitotoxicity in Alzheimer’s disease. Neurotox Res 7:125–141

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya D, Kunishima N, Kamiya N, Jingami H, Morikawa K (2002) Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc Natl Acad Sci U S A 99:2660–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Bittner GC, Ricq EL, Hooker JM (2014) A philosophy for CNS radiotracer design. Acc Chem Res 47:3127–3134

    Article  PubMed  PubMed Central  Google Scholar 

  • Varnas K, Jureus A, Finnema SJ, Johnstrom P, Raboisson P, Amini N, Takano A, Stepanov V, Halldin C, Farde L (2018) The metabotropic glutamate receptor 5 radioligand [(11)C]AZD9272 identifies unique binding sites in primate brain. Neuropharmacology 135:455–463

    Article  PubMed  Google Scholar 

  • Varney M, Anderson J, Bradbury M, Bristow L, Brodkin J, Giracello D, Jachec C, Holtz G, Prasit P, Rao S et al (2002) 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP): a potent and highly selective metabotropic glutamate subtype 5 (mGlu5) receptor antagonist with anxiolytic activity. Neuropharmacology 43:311–311

    Google Scholar 

  • Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y (2010a) Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 1:420–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wager TT, Hou X, Verhoest PR, Villalobos A (2010b) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JQ, Tueckmantel W, Zhu AJ, Pellegrino D, Brownell AL (2007) Synthesis and preliminary biological evaluation of 3-[F-18]Fluoro-5-(2-pyridinylethynyl)benzonitrile as a PET radiotracer for imaging metabotropic glutamate receptor subtype 5. Synapse 61:951–961

    Article  CAS  PubMed  Google Scholar 

  • Wang JQ, Zhang Z, Kuruppu D, Brownell AL (2012) Radiosynthesis of PET radiotracer as a prodrug for imaging group II metabotropic glutamate receptors in vivo. Bioorg Med Chem Lett 22:1958–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanger-Baumann CA, Mu L, Honer M, Belli S, Alf MF, Schubiger PA, Kramer SD, Ametamey SM (2011) In vitro and in vivo evaluation of [F-18]-FDEGPECO as a PET tracer for imaging the metabotropic glutamate receptor subtype 5 (mGluR5). NeuroImage 56:984–991

    Article  CAS  PubMed  Google Scholar 

  • Warnock G, Sommerauer M, Mu L, Pla Gonzalez G, Geistlich S, Treyer V, Schibli R, Buck A, Kramer SD, Ametamey SM (2018) A first-in-man PET study of [(18)F]PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5. Eur J Nucl Med Mol Imaging 45:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse RN (2003) Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 5:376–389

    Article  PubMed  Google Scholar 

  • Xi W, Tian M, Zhang H (2011) Molecular imaging in neuroscience research with small-animal PET in rodents. Neurosci Res 70:133–143

    Article  PubMed  Google Scholar 

  • Xu YW, Li ZZ (2019) Imaging metabotropic glutamate receptor system: application of positron emission tomography technology in drug development. Med Res Rev 39:1892–1922

    Article  PubMed  Google Scholar 

  • Xu R, Zanotti-Fregonara P, Zoghbi SS, Gladding RL, Woock AE, Innis RB, Pike VW (2013) Synthesis and evaluation in monkey of [(18)F]4-fluoro-N-methyl-N-(4-(6-(methylamino)pyrimidin-4-yl)thiazol-2-yl)benzami de ([(18)F]FIMX): a promising radioligand for PET imaging of brain metabotropic glutamate receptor 1 (mGluR1). J Med Chem 56:9146–9155

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Yoshida Y, Kumata K, Yui JJ, Kawamura K, Hatori A, Fukumura T, Zhang MR (2011) Radiosynthesis and preliminary evaluation of 4-[(18)F]fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as a new positron emission tomography ligand for metabotropic glutamate receptor subtype 1. Bioorg Med Chem Lett 21:2998–3001

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Kawamura K, Yui J, Hatori A, Ohya T, Xie L, Wakizaka H, Yoshida Y, Fukumura T, Zhang MR (2012a) In vivo measurement of the affinity and density of metabotropic glutamate receptor subtype 1 in rat brain using 18F-FITM in small-animal PET. J Nucl Med 53:1601–1607

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Maeda J, Kawamura K, Yui J, Hatori A, Yoshida Y, Nagai Y, Tokunaga M, Higuchi M et al (2012b) Imaging for metabotropic glutamate receptor subtype 1 in rat and monkey brains using PET with [18F]FITM. Eur J Nucl Med Mol Imaging 39:632–641

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Fujinaga M, Yui J, Ikoma Y, Hatori A, Xie L, Wakizaka H, Kumata K, Nengaki N, Kawamura K, Zhang MR (2014) Noninvasive quantification of metabotropic glutamate receptor type 1 with [(1)(1)C]ITDM: a small-animal PET study. J Cereb Blood Flow Metab 34:606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki T, Fujinaga M, Kawamura K, Furutsuka K, Nengaki N, Shimoda Y, Shiomi S, Takei M, Hashimoto H, Yui J et al (2016) Dynamic changes in striatal mGluR1 but not mGluR5 during pathological progression of Parkinson’s disease in human alpha-synuclein A53T transgenic rats: a multi-PET imaging study. J Neurosci 36:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki T, Fujinaga M, Mori W, Zhang Y, Wakizaka H, Nengaki N, Xie L, Hatori A, Zhang MR (2017) In vivo monitoring for regional changes of metabotropic glutamate receptor subtype 1 (mGluR1) in pilocarpine-induced epileptic rat brain by small-animal PET. Sci Rep 7:14945

    Article  PubMed  PubMed Central  Google Scholar 

  • Yanamoto K, Konno F, Odawara C, Yamasaki T, Kawamura K, Hatori A, Yui J, Wakizaka H, Nengaki N, Takei M, Zhang MR (2010) Radiosynthesis and evaluation of [(11)C]YM-202074 as a PET ligand for imaging the metabotropic glutamate receptor type 1. Nucl Med Biol 37:615–624

    Article  CAS  PubMed  Google Scholar 

  • Yu M (2007) Recent developments of the PET imaging agents for metabotropic glutamate receptor subtype 5. Curr Top Med Chem 7:1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Yu MX, Tueckmantel W, Wang XK, Zhu AJ, Kozikowski AP, Brownell AL (2005) Methoxyphenylethynyl, methoxypyridylethynyl and phenylethynyl derivatives of pyridine: synthesis, radiolabeling and evaluation of new PET ligands for metabotropic glutamate subtype 5 receptors. Nucl Med Biol 32:631–640

    Article  CAS  PubMed  Google Scholar 

  • Zanotti-Fregonara P, Barth VN, Liow JS, Zoghbi SS, Clark DT, Rhoads E, Siuda E, Heinz BA, Nisenbaum E, Dressman B et al (2013a) Evaluation in vitro and in animals of a new 11C-labeled PET radioligand for metabotropic glutamate receptors 1 in brain. Eur J Nucl Med Mol Imaging 40:245–253

    Article  CAS  PubMed  Google Scholar 

  • Zanotti-Fregonara P, Barth VN, Zoghbi SS, Liow JS, Nisenbaum E, Siuda E, Gladding RL, Rallis-Frutos D, Morse C, Tauscher J et al (2013b) 11C-LY2428703, a positron emission tomographic radioligand for the metabotropic glutamate receptor 1, is unsuitable for imaging in monkey and human brains. EJNMMI Res 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanotti-Fregonara P, Lammertsma AA, Innis RB (2013c) Suggested pathway to assess radiation safety of (1)(8)F-labeled PET tracers for first-in-human studies. Eur J Nucl Med Mol Imaging 40:1781–1783

    Article  PubMed  Google Scholar 

  • Zanotti-Fregonara P, Xu R, Zoghbi SS, Liow JS, Fujita M, Veronese M, Gladding RL, Rallis-Frutos D, Hong J, Pike VW, Innis RB (2016) The PET radioligand 18F-FIMX images and quantifies metabotropic glutamate receptor 1 in proportion to the regional density of its gene transcript in human brain. J Nucl Med 57:242–247

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Villalobos A, Beck EM, Bocan T, Chappie TA, Chen L, Grimwood S, Heck SD, Helal CJ, Hou X et al (2013) Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand. J Med Chem 56:4568–4579

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen L, Beck EM, Chappie TA, Coelho RV, Doran SD, Fan KH, Helal CJ, Humphrey JM, Hughes Z et al (2017a) The discovery of a novel phosphodiesterase (PDE) 4B-preferring Radioligand for positron emission tomography (PET) imaging. J Med Chem 60:8538–8551

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Kumata K, Yamasaki T, Cheng R, Hatori A, Ma L, Zhang Y, Xie L, Wang L, Kang HJ et al (2017b) Synthesis and preliminary studies of a novel negative allosteric modulator, 7-((2,5-dioxopyrrolidin-1-yl)methyl)-4-(2-fluoro-4-[(11)C]methoxyphenyl) quinoline-2-carboxamide, for imaging of metabotropic glutamate receptor 2. ACS Chem Neurosci 8:1937–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, Schirrmacher ES, Soucy JP, Skelin I, Gratton A et al (2015) Imaging in vivo glutamate fluctuations with [(11)C]ABP688: a GLT-1 challenge with ceftriaxone. J Cereb Blood Flow Metab 35:1169–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon M. Ametamey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mu, L., Ametamey, S.M. (2021). Current Radioligands for the PET Imaging of Metabotropic Glutamate Receptors. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics