Skip to main content

The Value of Positron Emission Tomography for Differentiating Brain Tumor Progression and Treatment-Induced Changes

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

Accurate differentiation of tumor progression and treatment-induced changes is the key to treatment decision in brain tumors. Several new tracer options are promising, of which [11C]-methyl-L-methionine (MET) and O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) are the most used. This chapter provides a clinical overview of important issues of treatment evaluation in primary brain tumors and brain metastases. The role and dilemmas in neuroimaging, including magnetic resonance imaging (MRI) and PET, are discussed. An overview is given of the role of MRI and PET in brain tumor follow-up with special focus on available literature in the role of amino acid PET to differentiate between tumor progression and treatment-induced changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AW, Westerlaan HE, Holtman GA, Aden KM, van Laar PJ, van der Hoorn A (2018) Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta- analysis. Clin Neuroradiol 28:401–411

    PubMed  Google Scholar 

  • Achrol A, Rennert R, Anders C et al (2019) Brain metastases. Nat Rev Dis Primers 5(1):5

    PubMed  Google Scholar 

  • Albert NL, Weller M, Suchorska B et al (2016) Response assessment in neuro-oncology working group and european association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 18:1199–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EH, Zhang P, Fisher BJ et al (2018) Association of MGMT promoter methylation status with survival outcomes in patients with high-risk glioma treated with radiotherapy and temozolomide: an analysis from the NRG oncology/RTOG 0424 trial. JAMA Oncol 4(10):1405–1409

    PubMed  Google Scholar 

  • Belohlávek O, Simonová G, Kantorová I, Novotný J Jr, Liscák R (2003) Brain metastases after stereotactic radiosurgery using the leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging 30(1):96–100

    PubMed  Google Scholar 

  • Binabaj MM, Bahrami A, ShahidSales S et al (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233(1):378–386

    CAS  PubMed  Google Scholar 

  • Boonzaier NR, Larkin TJ, Matys T et al (2017) Multiparametric MR imaging of diffusion and perfusion in contrast-enhancing and nonenhancing components in patients with glioblastoma. Radiology 284(1):180–190

    PubMed  Google Scholar 

  • Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    PubMed  Google Scholar 

  • Ceccon G, Lohmann P, Stoffels G et al (2017) Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology 19(2):281–288

    CAS  PubMed  Google Scholar 

  • Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    CAS  PubMed  Google Scholar 

  • Chen L, Douglass J, Kleinberg L et al (2018) Concurrent immune checkpoint inhibitors and stereotactic radiosurgery for brain metastases in non-small cell lung cancer, melanoma, and renal cell carcinoma. Int J Radiat Oncol Biol Phys 100(4):916–925

    PubMed  Google Scholar 

  • Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK (2016) Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS One 11(1):e0141438

    PubMed  PubMed Central  Google Scholar 

  • Cicone F, Minniti G, Romano A et al (2015) Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 42(1):103–111

    CAS  PubMed  Google Scholar 

  • Coope DJ, Cizek J, Eggers C et al (2007) Evaluation of primary brain tumors using 11C-methionine PET with reference to a normal methionine uptake map. J Nucl Med 48(12):1971–1980

    CAS  PubMed  Google Scholar 

  • Dandois V, Rommel D, Renard L, Jamart J, Cosnard G (2010) Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. Neuroradiology 37:89–97

    CAS  Google Scholar 

  • de Zwart PL, van Dijken BRJ, Holtman GA et al (2019) Diagnostic accuracy of positron emission tomography tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and meta-analysis. J Nucl Med 119:233809

    Google Scholar 

  • DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    CAS  PubMed  Google Scholar 

  • Delattre JY, Krol G, Thaler HT, Posner JB (1988) Distribution of brain metastases. Arch Neurol 45(7):741–744

    CAS  PubMed  Google Scholar 

  • Deuschl C, Kirchner J, Poeppel TD et al (2018) 11C-MET PET/MRI for detection of recurrent glioma. Eur J Nucl Med Mol Imaging 45(4):593–601

    CAS  PubMed  Google Scholar 

  • Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    PubMed  Google Scholar 

  • Donovan EK, Parpia S, Greenspoon JN (2019) Incidence of radionecrosis in single-fraction radiosurgery compared with fractionated radiotherapy in the treatment of brain metastasis. Curr Oncol 26(3):e328–e333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galldiks N, Stoffels G, Fills CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53(9):1367–1374

    CAS  PubMed  Google Scholar 

  • Galldiks N, Lohmann P, Albert NL et al (2019) Current status of PET imaging in neuro-oncology. Neuro-Oncol Adv 1(1):vdz010

    Google Scholar 

  • Galldiks N, Kocher M, Ceccon G et al (2020) Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro-Oncology 22(1):17–30

    PubMed  Google Scholar 

  • Glaudemans AWJM, Enting RH, Heesters MAAM et al (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:615–635

    CAS  PubMed  Google Scholar 

  • Hardesty D, Nakaji P (2016) The current and future treatment of brain metastases. Front Surg 3(30):1–7

    Google Scholar 

  • Herrmann K, Czernin J, Cloughesy T et al (2014) Comparison of visual and semiquantitative analysis of 18F-FDOPA- PET/CT for recurrence detection in glioblastoma patients. Neuro-Oncology 16:603–609

    PubMed  Google Scholar 

  • Hojjati M, Badve C, Garg V et al (2018) Role of FDG-PET/MRI, FDG-PET/CT, and dynamic susceptibility contrast perfusion mri in differentiating radiation necrosis from tumor recurrence in glioblastomas. J Neuroimaging 28:118–125

    PubMed  Google Scholar 

  • Karunanithi S, Sharma P, Kumar A et al (2013) Comparative diagnostic accuracy of contrast-enhanced MRI and 18F-FDOPA PET-CT in recurrent glioma. Eur Radiol 23:2628–2635

    PubMed  Google Scholar 

  • Kim YH, Oh SW, Lim YJ et al (2010) Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 112(9):758–765

    PubMed  Google Scholar 

  • Langen KJ, Galldiks N, Hattingen E, Shah NJ (2017) Advances in neuro-oncology imaging. Nat Rev Neurol 13:279–289

    PubMed  Google Scholar 

  • Lapa C, Linsenmann T, Monoranu CM et al (2014) Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med 55:1611–1616

    CAS  PubMed  Google Scholar 

  • Law I, Albert NL, Arbizu J et al (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 46:540–557

    CAS  PubMed  Google Scholar 

  • Lin NU, Lee EQ, Aoyama H et al (2015) Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 16(6):e270–e278. https://doi.org/10.1016/S1470-2045(15)70057-4

    Article  PubMed  Google Scholar 

  • Lizarraga KJ, Allen-Auerbach M, Czernin J et al (2014) (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med 55(1):30–36

    CAS  PubMed  Google Scholar 

  • Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    PubMed  Google Scholar 

  • Minamimoto R, Saginoya T, Kondo C, Tomura N, Ito K, Matsuo Y et al (2015) Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One 10(7):e0132515

    PubMed  PubMed Central  Google Scholar 

  • Miranda-Filho A, Pineros M, Soerjomataram I et al (2017) Cancers of the brain and CNS: global patterns and trends in incidence. Neuro-Oncology 19(2):270–280

    PubMed  Google Scholar 

  • Nagata T, Tsuyuguchi N, Uda T et al (2011) Examination of 11C-methionine metabolism by the standardized uptake value in the normal brain of children. J Nucl Med 52:201–205

    PubMed  Google Scholar 

  • Okamoto S, Shiga T, Hattori N, Kubo N, Takei T, Katoh N et al (2010) Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med 25(3):213–220

    PubMed  Google Scholar 

  • Ostrom QT, Cioffi G, Gittleman H et al (2019) BTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Suppl 5):v1–v100

    PubMed  PubMed Central  Google Scholar 

  • Papin-Michault C, Bonnetaud C, Dufour M et al (2016) Study of LAT1 expression in brain metastases: towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One 11(6):e0157139

    PubMed  PubMed Central  Google Scholar 

  • Paquet M, Doyen J, Mondot L et al (2017) Value of early and delayed imaging for 18F-FDOPA PET high grade gliomas evaluation [abstract]. Eur J Nucl Med Mol Imaging 44:S642–S643

    Google Scholar 

  • Rogers TW, Toor G, Drummond K et al (2018) The 2016 revision of the WHO classification of central nervous system tumours: retrospective application to a cohort of diffuse gliomas. J Neuro-Oncol 137(1):181–189

    Google Scholar 

  • Romagna A, Unterrainer M, Schmid-Tannwald C et al (2016) Suspected recurrence of brain metastases after focused high dose radiotherapy: can [18F]FET- PET overcome diagnostic uncertainties? Radiat Oncol 11(1):139

    PubMed  PubMed Central  Google Scholar 

  • Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764

    PubMed  Google Scholar 

  • Sneed P, Mendez J, Vemer-van den Hoek J et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg 123(2):373–386

    CAS  PubMed  Google Scholar 

  • Soffietti R, Abacioglu U, Baumert B et al (2017) Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro-Oncology 19(2):162–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Tabouret E et al (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32:4655–4662

    PubMed  Google Scholar 

  • Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    PubMed  Google Scholar 

  • Thust SC, Van Den Bent MJ, Smits M (2018) Pseudoprogression of brain tumors. J Magn Reson Imaging 48:571–589

    PubMed Central  Google Scholar 

  • Tomura N, Kokubun M, Saginoya T et al (2017) Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among 11C-methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC—preliminary results. AJNR 38(8):1520–1527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064

    PubMed  Google Scholar 

  • van den Bent MJ, Baumert B, Erridge SC et al (2017) Interim results from the CATNON trial (EORTC study 26053-22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, open-label intergroup study. Lancet 390(10103):1645–1653

    PubMed  PubMed Central  Google Scholar 

  • van Dijken BRJ, van Laar PJ, Holtman GA, van der Hoorn A (2017) Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol 27:4129–4144

    PubMed  PubMed Central  Google Scholar 

  • van Dijken BRJ, van Laar PJ, Smits M et al (2019) Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 49:11–22

    PubMed  Google Scholar 

  • van Waarde A, Elsinga PH (2008) Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des 14(31):3326–3339

    PubMed  Google Scholar 

  • Weller M, van den Bent MJ, Tonn JC et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18(6):e315–e329

    PubMed  Google Scholar 

  • Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    PubMed  Google Scholar 

  • Yamane T, Sakamoto S, Senda M (2010) Clinical impact of 11C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690

    PubMed  Google Scholar 

  • Yan JL, van der Hoorn A, Larkin TTJ et al (2017) Extent of resection of peritumoral diffusion tensor imaging-detected abnormality as a predictor of survival in adult glioblastoma patients. J Neurosurg 126(1):234–241

    PubMed  Google Scholar 

  • Yan JL, Li C, Boonzaier NR et al (2019) Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement. Ther Adv Neurol Disord 12:1756286419844664

    PubMed  PubMed Central  Google Scholar 

  • Yomo S, Oguchi K (2017) Prospective study of 11C-methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC Cancer 17(1):713

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart R. J. van Dijken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Dijken, B.R.J., Enting, R.H., Jeltema, HR., Kramer, M.C.A., Dierckx, R.A.J.O., van der Hoorn, A. (2021). The Value of Positron Emission Tomography for Differentiating Brain Tumor Progression and Treatment-Induced Changes. In: Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Leenders, K.L. (eds) PET and SPECT in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-53168-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53168-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53167-6

  • Online ISBN: 978-3-030-53168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics